Building with LEGO® Mindstorms® 101

AN OVERVIEW OF LEGO[®] EV3 MINDSTORMS[®] ELEMENTS AND HOW THEY WORK TOGETHER

Required Stuff

Please do not wander the building.

- Rest Rooms Location.
- Food and Drink.
- Cell phones

The approximately 2000 LEGO[®] parts in the kits today are on loan to us. Sorry you cannot keep them.

Introductions

▶ UME FTC Teams are helping today.

- ► The Prototypes #8626
- Terabytes #11097

WiFi and Informational Links

SSID: UMEagle

Additional clinics at:

http://www.umepreprobotics.com

Today presentation available at:

http://www.roboplex.org/fll

WARNING

CHOKING HAZARD – Do **NOT** put LEGO[®] blocks or pieces in you mouth for any reason. Not only is it gross, they just don't taste good. Also no LEGO[®] pieces in your nose, ears, eyes or anywhere else they don't belong.

Introduction

- Annual production of Lego bricks averages approximately 36 billion per year, or about 1140 elements per second.
- Since 1958, more than 400 billion Lego[®] pieces have been produced, or 86 for every person in the world!
- There are roughly 4,200 different Lego[®] elements in 58 different colors.

Same piece, many different names Same piece, many different colors

Hands-on Exercises Parts List

Qty	Item	P/N
8	Friction Peg	4121715
3	Beam 11M	4562805
2	Peg 3M	4514553
2	Beam 5M	4142135
2	3x5 90 beam	4585040
2	Beam 7M	4495935
2	Cross Axle 2M	4142865
2	Technic Cross Block 2x1	4140430
2	Technic Cross Block 2x2	4162857
3	Non-friction pegs	4211807

Qty	ltem	P/N
2	Axle 5M	4211639
2	Double cross block	4121667
1	24z gear	4514558
1	8z gear	6012451
1	Axle 3M	4211815
1	Axle 4M	370526
1	Bionicle eye	4173941
1	Half bushing	4239601
1	Bushing	4227155

LEGO[®] Mindstorms[®] EV3 Core Kit (45544)

- The LEGO[®] Technic elements in the Mindstorms[®] sets are:
 - Electronic elements
 - Beams
 - Pegs and axle pegs
 - Axles and connectors
 - Gears
 - Wheels
 - Decorative elements
 - Miscellaneous elements

LEGO[®] Mindstorms[®] EV3 Core Kit (31313)

Three websites the compare EV3 kit

http://robotsquare.com/2013/11/25/differencebetween-ev3-home-edition-and-education-ev3/

http://www.generationrobots.com/blog/en/2015/ 02/differences-lego-mindstorms-education-ev3-kitev3-home-edition/

https://www.intorobotics.com/8-majordifferences-between-mindstorms-ev3-educationand-home-edition/

Electronic Elements

INTELLIGENT BRICK DRIVE MOTORS TOUCH SENSOR
 COLOR SENSOR ULTRASONIC SENSOR
 GYROSCOPE CONNECTOR CABLES

Intelligent Bricks History

EV3

- Educational released August 1, 2013
- Commercial released
 September 1, 2013

NXT

Released 2006

► RCX

- (Robotic Command eXplorers)
- Released 1998

Sensors

6008472: EV3 Touch Sensors (2)
 6008919: EV3 Color Sensor
 6008916: Gyro
 6008924: Ultrasonic Sensor

Drive Motors

6009430: EV3 drive motor
6008577: Medium motor

Beams

■ STRAIGHT BEAMS ■ ANGULAR BEAMS ■ FRAMES ■ THIN BEAMS

Beams - Straight

Beams are measured by counting the number of holes.

- Beams come in odd numbers when counting the holes, with one exception.
- Beams start with15 holes and go down in size by two holes to the 3 hole beam and include one even-numbered beam with 2 holes.
- The number of holes corresponds to the length of the beam in Fundamental LEGO® Units or Modules (1M is 8mm).

Tip for determining beam size.

To quickly determine the size of the longer beams: place a finger on the middle hole of the beam, then you can quickly count how many holes are on one side, double it, and add one.

Specialty beams

6008527: Horizontal to Vertical Beam 90 Degrees

6006140: Beam 1X2 with Cross And Hole

4538007: Cross Block 3X2

Pegs and Axle Pegs

Pegs are like the nails, screws, and bolts of LEGO[®] Mindstorms[®], they hold things together.

- Pegs fit in the beam holes.
- Two primary groups of pegs:
 - Friction
 - Non-Friction

Pegs and Axle Pegs – Friction

4121715: Connector Peg with Friction

- 4140806: 2M Friction Snap with Cross Hole
- ► 4514553: 3M Connector Peg with Friction
- 4206482: Connector with Friction Cross axle
- 4184169: Ball With Friction Snap*

Pegs and Axle Pegs – Non-friction

4211807: Connector peg

► 4514554: 3M Connector peg

4666579: Connector peg Cross Axle

Identifying friction and non-friction pegs

Friction pegs have ridges that help to create friction with the beams.

Non-Friction pegs are smooth.

Beams and "snap" combinations

4225033: Beam 3M with 4 Snaps
 4296059: Angular Beam 90° with 4 Snaps

Using Beams and Pegs

Hands-on activity

Extending Beams

- Using two black pegs with friction connect two beams using the two end holes of each beam.
- Test: Holding the ends of the extended beam gently flex it.
- Result: The beam is straight but still has some flex.

Extending Beams

- Using the same two black pegs with friction, overlap the beams five holes.
- Test: Holding the ends of the extended beam gently flex it.

Note: Adding additional black pegs will hold the beams together better, but not required for strength.

Increasing Strength by Making Wider

- Using two 3M blue pegs with friction, overlap the beams five holes. Then add an additional beam on the pegs extending.
- Result: A more ridged structure.

Note: Alternate the direction of the 3M blue peg ridge to reduce separation. Peg ridge can be used to help in keeping pegs in place when removable attachments.

Angular beams

- An angular beam with three holes before and seven holes after the bend is a 3x7 angular beam.
- 3x5 90° angular beam has holes at both ends.
- 2x4 90° angular beam has a hole at one end and cross hole at the other.
- All other angular beams have cross holes at the ends.

Angular beams

- > 4141270: Angular Beam 4X2 90°
- 4211713: Angular Beam 3X5 90° (Med. Grey) / 4585040 (White)
- > 4211624: Angular Beam 3X7
- 4509912: Angular Beam 4X4

4495412: Double Angular Beam 3X7

4112282: Technic Angular Beam 4X6

4552347: T-Beam 3X3 with Hole

Angular combinations

Frames are referred to based on their shape:

► O frame

► H frame

> Frames add strength to structures.

4539880: Beam Frame 5X7

4539880: Beam Frame 5X7

Are half the width of a normal beam.

Useful for adding functions or styling to your robots.

6009019: Triangle

4142236: Lever 1X4, Without Notch 4112287: Technic Lever 3X3M, 90* 4503417: Technic 5M Half Beam*

Structural frames

Hands-on activity

Make a Structural Frame

Using two 11M beams, two 5M beam, and four black pegs, make a structural frame as shown.

Strength Test of Structural Frame

- Hold the bottom and press on one side of the frame.
- What happens to the frame?
Adding Strength to the Structural Frame

- Using two 11M beams, two 3X5 90° angular beams, and six black pegs, make a structural frame as shown.
- Hold the bottom and press on one side of the frame.
- What happens to the frame this time?

Reinforcing with angles

A beam angled between the two beams will also improve the structural strength.

Axles and connectors

■ AXLES ■ BUSHINGS ■ CROSS BLOCKS

- Length is same as a Lego[®] brick, the smallest is called a 2M axle (with groove) and commonly red or black.
 - The odd number axles are typically grey (3, 5, 7M axle).
 - The even number axles are typically black (4, 6, 8M axle).

Specialty Axles

Axle with end stopCross axle with end stop

Cross axle with end knob

4263624: 5.5M Double Cross Axle

4560177: Cross Axle 4M With End Stop

4499858: Cross Axle 8M With End Stop 6031821: Cross Axle 3M with End Knob

- 4239601: Half Bushing for Cross Axle
- 4211622: Bushing for Cross Axle
- 4560175: Double Bushing 3M

Bushings can be used as spacers to prevent tires from hitting beams or other structures.

Cross blocks

- 4173668 Cross Block 90
- 4121667 Double Cross Block
- 4140430 Technic Cross Block 2X1 (Mickey)
- 4162857 Technic Cross Block Fork 2X2 (Minnie)
- 4210857 Technic Cross Block 90, 2X3

Cross blocks combinations

Using this cross block combination allows mounting two beams at a right angle.

Cross blocks combinations

This cross block combination allows two beams to be mounted smooth sides together.

Cross block combinations

This combination of cross blocks also allows mounting two beams at a right angle.

Tip for removing small cross axle connector

Use long axle to push small axle through.

Cross blocks

Hands-on activity

Cross blocks: Hands-on parts needed

> 7M beams (2)

- Technic Cross Block 2X1 (Mickey) (2)
- Technic Cross Block Fork 2X2 (Minnie) (2)
- Black peg with Friction (8)
- 2M Cross Axle with Groove (2)

Cross block building instructions

- Align Technic Cross Block 2X1 (Mickey) with Technic Cross Block Fork 2X2 (Minnie).
- Insert 2M Cross Axle with Groove.
- Repeat to make a second cross block assembly.

Cross block building instructions

- Insert four black pegs into the cross block assembly.
- Repeat on second cross block assembly.

Cross blocks building Instructions

Place two 7M beams on cross blocks.

- LEGO[®] pieces are designed to separate when pulled. When intentional it is called disassembly.
- Sometimes assemblies pull apart unintentionally simply sitting there or while operating. This is called structural failure.
- One solution is bracing.
- Bracing can add strength with minimum weight increase.

Additional cross blocks

- 4210857: Cross Block 3M
- 4502595: 3-Branch Cross Axle Cross Hole
- 4538007: Cross Block 3X2

Bracing – Sample 1

Bracing uses combinations of LEGO[®] part at right angles.

Bracing – Sample 2

Bracing – Sample 2

Bracing

Hands-on activity

Bracing: Hands-on parts needed

▶ 11M beams (3 ea.)

► 5M beam (1 ea.)

Double cross block (2 ea.)

► 5M axle (2 ea.)

Black peg with friction (2 ea.)

Axle connectors

- 4107085: Angle Element, 0 Degrees [1]
- 4107783: Angle Element, 180 Degrees [2]
- 4107767: Angle Element, 90 Degrees [6]
- 4513174: Cross Axle, Extension, 2M
- 4526985: Tube W/Double Ø4.85

Gears are rotating parts with teeth that mesh with other parts with teeth.

- LEGO[®] gears are identified by the number of teeth followed by a "z".
- Most gears are 1M thick

Gears

- 6012451 Gear Wheel 8z
- 4177431 Double Conical Wheel 12z
- > 4640536 Gear Wheel 16z
- 4514558 Gear Wheel 24z
- 4285634 Gear Wheel 40z

Gears

- 4565452 Conical Wheel 12z
- 4640536 Gear Wheel 16z
- 4177430 Double Conical Wheel 20z 1M
- ▶ 4211510 Worm gear
- 4255563 Double Conical Wheel 36z

Gear Ratio: the difference between the rates at which the last (driven) and first (driver) gears rotate.

Gears

Hands-on activity

Gears: Hands-on parts needed

- 24z gear
- 8z gear
- 3m axle
- 4m axle
- 5m axle
- Double Cross Block
- Bionicle Eye
- Half-bushing
- bushing

Gears: Building instructions

Insert 4M axle into the 24z gear.

Insert the gear assembly through the fourth hole in the beam.

Gears: Building instructions

Install bushing on the axle.

Install double cross block on the axle behind the bushing.

Insert the 3M axle into the other end of the double cross block.

Gears: Building instructions

- Insert the 5M axle into the 8z gear.
- Insert the gear assembly into the second hole in the beam.
- Install the half-bushing onto the other side of the 5M axle.
- Install the orange bionicle eye on the other end.

Gear: Testing

Turn the crank slowly one rotation and count the number of rotation of the bionicle eye.

Gear combinations

Teeth	8	12	16	20	24	36	40
8	1:1				1:3		1:5
12				3:5		1:3	
16			1:1				
20					5:6		
24					1:1		3:5
36							
40							1:1

Gear combinations

http://gears.sariel.pl/

24z to 24z (1:1)

20z to 24z (5:6)

24z to 8z (3:1)

Gears: Motion Transfer

How can you achieve linear motion?

Motion Transfer

Hands-on activity

Motion Transfer: Building instructions

- Place 5M axle in 24z gear.
- Insert gear into fifth hole in an 11M beam.
- Insert gray non-fraction peg into hole on gear.

Motion Transfer: Building instructions

- Insert gray non-friction peg in last hole on 11M beam.
- Insert 11M beam (red) second hole on gray peg.
- Insert gray non-friction peg in last hole of 7M beam.
- Insert 7M beam (yellow) on gray non-friction pegs on gear and 7M beam (red).

Motion Transfer: Building instructions

- Insert bushing on 5M axle on the opposite side of 11M beam.
- Insert double cross block on 5M axle.
- Insert second 5M axle into double cross block.

Motion Transfer: Testing

- Rotate the handle (5M axle).
- What happens to the forward (red) 11M beam?

Linear Motion with a motor

- Adding a motor to drive linear motion is simple.
- The 24z gear and drive motor both have three holes.

Gear Trains - Direction

An idler gear is one between two or more gears to change the direction of the output axle without changing the gear ratio.

 $(1:3) \times (3:1) = 3:3 \text{ or } 1:1$

Gears and Motors

Gears: Using worm gears

- Worm gears can be used to create linear motion too. This Forklift attachment is one example.
- Rotating the gear causes the forklift arms to travel up and down.
- Notice that the 8z gear does not rotate.

6023956: LEGO[®] Steel Ball
4610280: Power Joint

4610380: Power Joint

Caster, Wheels, and Miscellaneous

Wheels (Tyres), Rims, and Tracks

6 Holes

The LEGO[®] Group is one of the world's largest tyre manufacturers.

Simple Wheel Matching

- Assembly the two wheels on an axle with a bushing in the middle.
- Align the bushing with the line on a slight slope with the axle at 90° to the line.
- Let the wheel assembly roll down the slope and watch if the bushing moves off the line.

Miscellaneous

- 4652236 Upper Part For Turntable 28z
- 4587275: Wedge-Belt Wheel Ø24
- 6028041: Tyre For Wedge-Belt Wheel
- 417394:1Bionicle Eye
- 4563044: 2X1X3 Steering Knuckle Arm

Decorative elements

Are just that. Have been used for a number of things.

4566251 Left Panel 3X5 4566249 Right Panel 3X5

4541326 Left Panel 5X11 4566249 Right Panel 3X5

How many?

Take six eight-stud LEGO bricks (2x4) – how many ways can they be combined?

With the aid of computers, the exact number of combinations has been calculated as 915,103,765!

Just so you know, two eight-stud LEGO bricks can be combined in 24 different ways and three eight-stud LEGO bricks in 1,060 ways.

Presentation available at:

http://www.roboplex.org/fll