Building with LEGO® Mindstorms® 101

AN OVERVIEW OF LEGO[®] EV3 MINDSTORMS[®] ELEMENTS AND HOW THEY WORK TOGETHER

CHOKING HAZARD – Do **NOT** put the LEGO® blocks or pieces in you mouth for any reason. Not only is it gross, they just don't taste good.

Also no LEGO[®] pieces in your nose, ears, eyes or anywhere else they don't belong.

Hands-on Exercises Parts List

Qty	Item	P/N
8	Friction Peg	4121715
3	Beam 11M	4562805
2	Peg 3M	4514553
2	Beam 5M	4142135
2	3x5 90 beam	4585040
2	Beam 7M	4495935
2	Cross Axle 2M	4142865
2	Technic Cross Block 2x1	4140430
2	Technic Cross Block 2x2	4162857
3	Non-friction pegs	4211807

Qty	ltem	P/N
2	Axle 5M	4211639
2	Double cross block	4121667
1	24z gear	4514558
1	8z gear	6012451
1	Axle 3M	4211815
1	Axle 4M	370526
1	Bionicle eye	4173941
1	Half bushing	4239601
1	Bushing	4227155

Introduction

- Annual production of Lego bricks averages approximately 2.16 per hour, or about 36,000 elements per minute.
- Since 1958, more than 400 billion LEGO® pieces have been produced, or 62 for every person in the world! (June 2008)
- There are roughly 4,200 different LEGO[®] elements in 53 different colors.

Same piece, many different names Same piece, many different colors

LEGO[®] Mindstorms[®] EV3 Core Kit (45544)

- The LEGO[®] Technic elements in the Mindstorms[®] sets are:
 - Electronic elements
 - Beams
 - Pegs and axle pegs
 - Axles and connectors
 - Gears
 - ► Wheels
 - Decorative elements
 - Miscellaneous elements

LEGO[®] Mindstorms[®] EV3 Core Kit (31313)

Three websites the compare EV3 kit

http://robotsquare.com/2013/11/25/differencebetween-ev3-home-edition-and-education-ev3/

http://www.generationrobots.com/blog/en/2015/ 02/differences-lego-mindstorms-education-ev3-kitev3-home-edition/

https://www.intorobotics.com/8-majordifferences-between-mindstorms-ev3-educationand-home-edition/

LEGO[®] Education SPIKE[™] Prime Set (45678)

- ► New 3x3 biscit
- New 2x4 brick has a cross axle hole
- New base plate
- New frames
- New wheels for easy mount with motor, precise turns and improved maneuverability
- New wire clips to help keep wires in check

Releases August 2019

LEGO[®] Education SPIKE[™] Hub (45601)

The programable Hub features:

- ► 5x5 light matrix
- 6 input/output ports
- Integrated 6-axis gyro
- ► Speaker
- Bluetooth connectivity
- Rechargeable battery

8

LEGO[®] Education SPIKE[™] App

SPIKE Prime's drag-anddrop coding environment for tablets and computers is based on the popular Scratch programming language.

https://scratch.mit.edu/

Electronic Elements

■ INTELLIGENT BRICK ■ DRIVE MOTORS

■ TOUCH SENSOR ■ COLOR SENSOR

■ ULTRASONIC SENSOR ■ GYROSCOPE ■ CONNECTOR CABLES

Intelligent Bricks History

Only these four Mindstorms[®] Bricks are permitted in FLL[®].

Spike Prime

Releasing August 2019

► EV3

- Educational released August 1, 2013
- Commercial released
 September 1, 2013

NXT

- Released 2006
- ► RCX

(Robotic Command eXplorers)

Released 1998

Sensors

6008472: EV3 Touch Sensors (2)
6008919: EV3 Color Sensor
6008916: Gyro
6008924: Ultrasonic Sensor

Gyro Sensor

Ultrasonic Sensor

Drive Motors

6009430: EV3 Large motor (2)
6008577: EV3 Medium motor

Beams and Pegs

STRAIGHT BEAMS ANGULAR BEAMS
 FRAMES THIN BEAMS FRICTION PEGS
 NON-FRICTION PEGS

Beams - Straight

▶ Beams are measured by counting the number of holes.

- Beams are available in odd numbers when counting the holes, with one exception.
- Beams start with15 holes and go down in size by two holes to the 3 hole beam and include one even-numbered beam with 2 holes.
- The number of holes corresponds to the length of the beam in Fundamental LEGO® Units or Modules (1M is 8mm).

Tip for determining beam size.

To quickly determine the size of the longer beams: place a finger on the middle hole of the beam, then you can quickly count how many holes are on one side, double it, and add one.

Specialty beams

► 6008527: Horizontal to Vertical (HTV) Beam 90 Degrees

► 6006140: Beam 1X2 with Cross And Hole

► 4538007: Axle and Triple Peg Cross Block

HTV Beam

1x2 Cross and Hole Beam

Axle and Triple Peg Cross Block

Pegs and Axle Pegs

Pegs are like the nails, screws, and bolts of LEGO[®] Mindstorms[®], they hold things together.

Pegs fit in the holes of other part.

- ► Two primary groups of pegs:
 - Friction
 - ► Non-Friction

Pegs and Axle Pegs – Friction

- ► 4121715: Connector Peg Friction
- ► 4140806: 2M Snap with Cross Hole Friction
- ► 4514553: 3M Connector Peg Friction
- ► 4206482: Connector with Cross axle Friction
- 4184169: Ball With Friction Snap*

Connector Peg -Friction

2M Snap with Cross Hole -Friction

3M Connector Peg - Friction

Connector with Cross axle - Friction

Ball With Friction Snap*

Pegs and Axle Pegs – Non-friction

- ► 4211807: Connector peg
- ► 4514554: 3M Connector peg
- ► 4666579: Connector peg Cross Axle

Non-friction connector peg

Non-friction 3M connector peg

Non-friction connector peg with axle

Identifying friction and non-friction pegs

- Friction pegs have ridges that help to create friction with the beams.
- ► Non-Friction pegs are smooth.

Beams and "snap" combinations

4225033: Beam 3M with 4 Snaps

► 4296059: Angular Beam 90° with 4 Snaps

AKA: H connector

AKA: L connector or Llama connector

Using Beams and Pegs

► Hands-on activity

Extending Beams

- Using two black friction pegs connect two beams using the two end holes of each beam.
- Test: Holding the ends of the extended beam gently flex it.
- Result: The beam is straight but still has some flex.

Extending Beams

- Using the same two black pegs with friction, overlap the beams five holes.
- Test: Holding the ends of the extended beam gently flex it.
- Result: Structure is more rigid.

Note: Adding additional black pegs will hold the beams together better, but not required for strength.

Increasing Strength by Making Wider

- Using two 3M blue friction pegs, overlap the beams five holes. Then add an additional beam on the pegs extending.
- Result: A more ridged structure.

Note: Alternate the direction of the 3M blue peg ridge can reduce separation. Peg ridge can be used to help in keeping pegs in place when removable attachments.

Angular beams

- An angular beam with three holes before and seven holes after the bend is a 3x7 angular beam.
- 3x5 90° angular beam has holes at both ends.
- 2x4 90° angular beam has a hole at one end and cross axle at the other.
- All other angular beams have cross axles at both ends.

Angular beams

- ► 4141270: Angular Beam 4X2 90°
- ► 4211713: Angular Beam 3X5 90° (Med. Grey)
- ► 4585040 Angular Beam 3X5 90° (White)
- ► 4211624: Angular Beam 3X7
- ► 4509912: Angular Beam 4X4

Angular beams

► 4495412: Double Angular Beam 3X7

► 4112282: Technic Angular Beam 4X6

► 4552347: T-Beam 3X3 with Hole

Angular combinations

Frames

► Frames are referred to based on their shape:

- ► O frame
- ► H frame

Frames allow building in multiple directions and can add strength to structures.

4539880: Beam Frame 5X7

4539880: Beam Frame 5X7

- ► Are half the width of a normal beam.
- ► Useful for adding functions or styling to your robots.

6009019: Triangle

4142236: Lever 1X4, Without Notch 4112287: Technic Lever 3X3M, 90* 4503417: Technic 5M Half Beam*

Structural frames

► Hands-on activity

Make a Structural Frame

Using two 11M beams, two 5M beam, and four black pegs, make a structural frame as shown.

Strength Test of Structural Frame

- Hold the bottom and press on one side of the frame.
- What happens to the frame?
Adding Strength to the Structural Frame

- Using two 11M beams, two 3X5 90° angular beams, and six black pegs, make a structural frame as shown.
- Hold the bottom and press on one side of the frame.
- What happens to the frame this time?

Reinforcing with angles

A beam angled between the two beams will also improve the structural strength.

Axles and connectors

■ AXLES ■ BUSHINGS ■ CROSS BLOCKS

Axles

- Length is same as a Lego[®] brick, the smallest is called a 2M axle (with groove) and commonly red or black.
 - The odd number axles are typically grey (3, 5, 7M axle).
 - The even number axles are typically black (4, 6, 8M axle).

FLL® mission kits have a variety of color axles.

Specialty Axles

> Axle with end stop (5.5 M)

- Cross axle with end stop (4M and 8M)
- Cross axle with end knob (3M)

4263624: 5.5M Double Cross Axle

4560177: Cross Axle 4M With End Stop

4499858: Cross Axle 8M With End Stop 6031821: Cross Axle 3M with End Knob

Bushings

- 4239601: Cross Axle Half Bushing
- ► 4211622: Cross Axle Bushing
- ► 4560175: Double 3M Bushing

Cross Axle Half Bushing

Cross Axle Bushing

Double 3M Bushing

Bushings can be used as spacers to prevent tires from hitting beams or other structures.

Cross blocks

- ► 4173668 Cross Block 90
- ► 4121667 Double Cross Block
- ► 4140430 Technic Cross Block 2X1 (Mickey)
- ▶ 4162857 Technic Cross Block Fork 2X2 (Minnie)

Cross Block 90

Double Cross Block

Cross Block 2x1 (Mickey)

Cross Block 2x2 (Minnie)

Additional cross blocks

► 4210857: Cross Block 90, 3M

► 4502595: 3-Branch Cross Axle Cross Hole

► 4538007: Cross Block 3X2

Cross Block 90, 3M 3-Branch Cross Axle Cross Hole

Cross Block 3X2

Cross blocks combinations

This cross block combination allows two beams to be mounted smooth sides together.

Cross blocks combinations

Using this cross block combination allows mounting two beams at a right angle.

Cross block combinations

This combination of cross blocks also allows mounting two beams at a right angle.

Tip for removing small cross axle connector

► Use long axle to push small axle through.

Cross blocks

Hands-on activity

Cross blocks: Hands-on parts needed

- ► 7M beams (2)
- Technic Cross Block 2X1 (Mickey) (2)
- Technic Cross Block Fork 2X2 (Minnie) (2)
- Black peg with Friction (8)
- 2M Cross Axle with Groove (2)

Cross block building instructions

- Align Technic Cross Block 2X1 (Mickey) with Technic Cross Block Fork 2X2 (Minnie).
- 2. Insert 2M Cross Axle with Groove.
- 3. Repeat to make a second cross block assembly.

Cross block building instructions

- 4. Insert four black pegs into the cross block assembly.
- 5. Repeat on second cross block assembly.

Cross blocks building Instructions

- 6. Place 7M beam on the pegs in cross blocks.
- 7. Place second 7M beam on the pegs in cross blocks.

Bracing

- LEGO[®] pieces are designed to separate when pulled. When intentional it is called disassembly.
- Sometimes assemblies pull apart unintentionally simply sitting there or while operating. This is called structural failure.
- One solution for structual failure is bracing. Bracing can add strength with minimum weight increase.

Bracing – Sample 1

Bracing uses combinations of LEGO[®] parts at right angles.

Bracing

► Hands-on activity

Bracing: Hands-on parts needed

▶ 11M beams (3 ea.)

► 5M beam (1 ea.)

Double cross block (2 ea.)

► 5M axle (2 ea.)

► Black peg with friction (2 ea.)

Step 1

Bracing – Sample 2

Bracing – Sample 2

Axle connectors

4107085: Angle Element, 0 Degrees [1]
4107783: Angle Element, 180 Degrees [2]
4107767: Angle Element, 90 Degrees [6]
4513174: Cross Axle, Extension, 2M
4526985: Tube W/Double Ø4.85

Angle Element, 0 Degrees [1]

Angle Element, 180 Degrees [2]

Angle Element, 90 Degrees [6]

Cross Axle, Extension, 2M

Tube W/Double Ø4.85

61

Axle connectors are identified with a number

Gears are rotating parts with teeth that mesh with other parts with teeth.

- LEGO[®] gears are identified by the number of teeth followed by a "z".
- Most gears are 1M thick

Gears

- ► 6012451 Gear Wheel 8z
- ► 4177431 Double Conical Wheel 12z
- ► 4640536 Gear Wheel 16z
- ► 4514558 Gear Wheel 24z
- ► 4285634 Gear Wheel 40z

Double Conical Wheel 12z

Gear Wheel 16z

Gear Wheel 24z

Gear Wheel 40z

Gears

- ► 4565452 Conical Wheel 12z
- ► 4177430 Double Conical Wheel 20z 1M
- ► 4255563 Double Conical Wheel 36z
- ▶ 4211510 Worm gear

Conical Wheel 12z

Double Conical

Wheel 20z 1M

Worm gear

Gears

Hands-on activity

Gear Ratio: the difference between the rates at which the last (driven) and first (driver) gears rotate.

Gears: Hands-on parts needed

- ► 24z gear
- ► 8z gear
- ► 3m axle
- ► 4m axle
- ► 5m axle
- Double Cross Block
- ► Bionicle Eye
- Half-bushing
- ► bushing

Gears: Building instructions

- 1. Insert 4M axle into the 24z gear.
- 2. Insert the gear assembly through the fourth hole in the beam.

Gears: Building instructions

3. Install bushing on the axle.

4. Install double cross block on the axle behind the bushing.

5. Insert the 3M axle into the other end of the double cross block.

Gears: Building instructions

- Insert a 5M axle
 through the half
 bushing, the beam,
 and the 8z gear.
- 7. Install the bionicle eye on the end of the 5M axle.

Gears: Build Check

Does your project look like this?

How is gear ration calculated?

A simple equation is used to find the ratio of your gearing system:

Number of Teeth on the **Driven** gear

Number of Teeth on the **Driver** gear

For this example:

Driven gear 8z / 24z **Driver** gear = 1/3 or 1:3

How is gear ratio expressed?

Gear Ratios are expressed as fractions and can be written a number of ways:

▶ 1 to 3

▶ 1/3

► 1:3 most commonly used

Remember that the driven gear will turn in the opposite direction of the driver gear

Gear ratio: Testing

Turn the crank slowly one rotation and count the number of rotation of the bionicle eye.

How many turns did the bionicle eye make

Gear ratio: Testing

Switch the handle and Bionicle eye.

Gear combinations

Teeth	8	12	16	20	24	36	40
8	1:1				1:3		1:5
12				3:5		1:3	
16			1:1				
20					5:6		
24					1:1		3:5
36							
40							1:1

Gear combinations

http://gears.sariel.pl/

24z to 24z (1:1)

20z to 24z (5:6)

24z to 8z (3:1)

Gears: Motion Transfer

- Motion transfer is using a circular motion action to produce a linear motion.
- What is linear motion?

How can you make linear motion using gears that turn in circles?

Motion Transfer

► Hands-on activity

- 1. Place a 5M axle in a 24z gear.
- 2. Insert the 5M axle and gear into fifth hole in an 11M beam.
- 3. Insert gray non-friction peg into a hole on gear.
- 4. Insert gray non-friction peg in last hole on 11M beam on the long end.

7M BEAM

- 5. Insert a second 11M beam (red) third hole on non-friction gray peg on the first beam.
- 6. Insert gray non-friction peg in last hole of 7M beam.
- 7. Insert 7M beam (yellow) on gray non-friction pegs on gear and 11M beam (red).

11M BEAM

GRAY NON-FRICTION

PEG

- Insert bushing on 5M axle on the opposite side of 11M beam.
- 9. Insert double cross block on 5M axle.
- 10. Insert a 5M axle into double cross block.

- Insert bushing on 5M axle on the opposite side of 11M beam.
- Insert double cross block on 5M axle.
- Insert second 5M axle into double cross block.

Motion Transfer: Testing

- Rotate the handle (5M axle).
- What happens to the forward (red) 11M beam?

Linear Motion with a motor

- Adding a motor to drive linear motion is simple.
- The 24z gear and drive motor both have three holes.

Gear Trains - Direction

An idler gear is one between two or more gears to change the direction of the output axle without changing the gear ratio.

Gear Trains - Ratio

 $(1:3) \times (3:1) = 3:3 \text{ or } 1:1$

Gears: Using worm gears

- Worm gears can be used to create linear motion too. This Forklift attachment is one example.
- Rotating the gear causes the forklift arms to travel up and down.
- Notice that the 8z gear does not rotate.

Caster, Wheels, and Miscellaneous

► 6023956: LEGO[®] Steel Ball

► 4610380: Power Joint

Wheels (Tyres), Rims, and Tracks

The LEGO[®] Group is one of the world's largest tyre manufacturers.

Wide 56 X 28

43.2 X 26 with 6 Holes

Element, 5X1.5

Sprocket, Ø,40,7

Simple Wheel Matching

- Assembly the two wheels on an axle with a bushing in the middle.
- Align the bushing with the line on a slight slope with the axle at 90° to the line.
- Let the wheel assembly roll down the slope and watch if the bushing moves off the line.

Miscellaneous

- ► 4652236 Upper Part For Turntable 28z
- ► 4587275: Wedge-Belt Wheel Ø24
- ► 6028041: Tyre For Wedge-Belt Wheel
- ► 4173941: Bionicle Eye
- 4563044: 2X1X3 Steering Knuckle Arm

Upper Part For Turntable 28z

Wedge-Belt Wheel Ø24

Tyre For Wedge-Belt Wheel

Bionicle Eye

2X1X3 Steering Knuckle Arm

Decorative elements

Are just that. Have been used for a number of things.

4566251 Left Panel 3X5

4566249 Right Panel 3X5

4541326 Left Panel 5X11 4566249 Right Panel 3X5

Disassembly Time

Please take apart the project and put the all the LEGOS[®] in the plastic bag.

Remember, we need the LEGOS[®] pieces for the next class.

How many?

With the aid of computers, the exact number of combinations has been calculated as 915,103,765!

Just so you know, two eight-stud LEGO bricks can be combined in 24 different ways and three eight-stud LEGO bricks in 1,060 ways.

Everything is awesome!

- Emmet Brickowski

Corrections and Comments: james.brodnick@gmail.com

