Building with LEGO®

Mindstorms ${ }^{\circledR} 101$

AN OVERVIEW OF LEGO ${ }^{\circledR}$ EV3

MINDSTORMS ${ }^{\circledR}$ ELEMENTS AND HOW THEY WORK TOGETHER

WARNWA

CHOKING HAZARD - Do NOT put the LEGO ${ }^{\circledR}$ blocks or pieces in you mouth for any reason. Not only is it gross, they just don't taste good.

Also no $\mathrm{LEGO}^{\circledR}$ pieces in your nose, ears, eyes or anywhere else they don't belong.

Hands-on Exercises Parts List

Qty	Item	P/N
8	Friction Peg	4121715
3	Beam 11M	4562805
2	Peg 3M	4514553
2	Beam 5M	4142135
2	3×590 beam	4585040
2	Beam 7M	4495935
2	Cross Axle 2M	4142865
2	Technic Cross Block 2×1	4140430
2	Technic Cross Block 2×2	4162857
3	Non-friction pegs	4211807

Qty	Item	P/N
2	Axle 5M	4211639
2	Double cross block	4121667
1	$24 z$ gear	4514558
1	8z gear	6012451
1	Axle 3M	4211815
1	Axle 4M	370526
1	Bionicle eye	4173941
1	Half bushing	4239601
1	Bushing	4227155

Introduction

- Annual production of Lego bricks averages approximately 2.16 per hour, or about 36,000 elements per minute.
- Since 1958, more than 400 billion LEGO ${ }^{\circledR}$ pieces have been produced, or 62 for every person in the world! (June 2008)
- There are roughly 4,200 different LEGO® ${ }^{\circledR}$ elements in 53 different colors.

Same piece, many different names Same piece, many different colors

LEGO ${ }^{\circledR}$ Mindstorms ${ }^{\circledR}$ EV3 Core Kit (45544)

- The LEGO ${ }^{\circledR}$ Technic elements in the Mindstorms ${ }^{\circledR}$ sets are:
- Electronic elements
- Beams
- Pegs and axle pegs
- Axles and connectors
- Gears
- Wheels
- Decorative elements
- Miscellaneous elements

LEGO ${ }^{\circledR}$ Mindstorms ${ }^{\circledR}$ EV3 Core Kit (31313)

Three websites the compare EV3 kit
http://robotsquare.com/2013/11/25/difference-between-ev3-home-edition-and-education-ev3/
http://www.generationrobots.com/blog/en/2015/ 02/differences-lego-mindstorms-education-ev3-kit-ev3-home-edition/
https://www.intorobotics.com/8-major-differences-between-mindstorms-ev3-education-and-home-edition/

LEGO ${ }^{\circledR}$ Education SPIKE ${ }^{\text {TM }}$ Prime Set (45678)

- New 3×3 biscit
- New 2×4 brick has a cross axle hole
- New base plate
- New frames
- New wheels for easy mount with motor, precise turns and improved maneuverability
- New wire clips to help keep wires in check

Releases August 2019

LEGO ${ }^{\circledR}$ Education SPIKE ${ }^{\text {TM }}$ Hub (45601)

The programable Hub features:

- 5×5 light matrix
- 6 input/output ports
- Integrated 6-axis gyro
- Speaker
- Bluetooth connectivity
- Rechargeable battery

LEGO ${ }^{\circledR}$ Education SPIKE ${ }^{\text {TM }}$ App

SPIKE Prime's drag-anddrop coding environment for tablets and computers is based on the popular Scratch programming language.
https://scratch.mit.edu/

Electronic Elements

- INTELLIGENT BRICK - DRIVE MOTORS
- TOUCH SENSOR COLOR SENSOR
- ULTRASONIC SENSOR G GYROSCOPE CONNECTOR CABLES

Intelligent Bricks History

Only these four Mindstorms ${ }^{\circledR}$ Bricks are permitted in FLL $^{\circledR}$.

- Spike Prime
- Releasing August 2019
- EV3
- Educational released August 1, 2013
- Commercial released September 1, 2013
- NXT
- Released 2006
- RCX
(Robotic Command eXplorers)
- Released 1998

Sensors

- 6008472: EV3 Touch Sensors (2)
- 6008919: EV3 Color Sensor
- 6008916: Gyro
- 6008924: Ultrasonic Sensor

Touch Sensor

Color Sensor

Drive Motors

- 6009430: EV3 Large motor (2)
- 6008577: EV3 Medium motor

Beams and Pegs
 - STRAIGHT BEAMS - ANGULAR BEAMS
 ■ FRAMES ■ THIN BEAMS ■ FRICTION PEGS
 - NON-FRICTION PEGS

Beams - Straight

- Beams are measured by counting the number of holes.
- Beams are available in odd numbers when counting the holes, with one exception.
- Beams start with 15 holes and go down in size by two holes to the 3 hole beam and include one even-numbered beam with 2 holes.
- The number of holes corresponds to the length of the beam in Fundamental LEGO® Units or Modules (1M is 8 mm).

Beams - Straight

Tip for determining beam size.

- To quickly determine the size of the longer beams: place a finger on the middle hole of the beam, then you can quickly count how many holes are on one side, double it, and add one.

Specialty beams

6008527: Horizontal to Vertical (HTV) Beam 90 Degrees

- 6006140: Beam 1X2 with Cross And Hole
- 4538007: Axle and Triple Peg Cross Block

HTV Beam

1×2 Cross and Hole Beam

Axle and Triple Peg Cross Block

Pegs and Axle Pegs

- Pegs are like the nails, screws, and bolts of LEGO ${ }^{\circledR}$ Mindstorms ${ }^{\circledR}$, they hold things together.
- Pegs fit in the holes of other part.
- Two primary groups of pegs:
- Friction
- Non-Friction

Pegs and Axle Pegs - Friction

- 4121715: Connector Peg - Friction
- 4140806: 2M Snap with Cross Hole - Friction
- 4514553: 3M Connector Peg - Friction
- 4206482: Connector with Cross axle - Friction
- 4184169: Ball With Friction Snap*

Ball With Friction Snap*

Pegs and Axle Pegs - Non-friction

- 4211807: Connector peg
- 4514554: 3M Connector peg
- 4666579: Connector peg Cross Axle

Non-friction connector peg

Non-friction 3M
connector peg

Non-friction connector peg with axle

Identifying friction and non-friction pegs

- Friction pegs have ridges that help to create friction with the beams.
- Non-Friction pegs are smooth.

Beams and "snap" combinations

- 4225033: Beam 3M with 4 Snaps
- 4296059: Angular Beam 90° with 4 Snaps

AKA: H connector

AKA: L connector or Llama connector

Using Beams and Pegs

- Hands-on activity

Extending Beams

- Using two black friction pegs connect two beams using the two end holes of each beam.
- Test: Holding the ends of the extended beam gently flex it.
- Result: The beam is straight but still has some flex.

Extending Beams

- Using the same two black pegs with friction, overlap the beams five holes.
- Test: Holding the ends of the extended beam gently flex it.
- Result: Structure is more rigid.

Note: Adding additional black pegs will hold the beams together better, but not required for strength.

Increasing Strength by Making Wider

- Using two 3M blue friction pegs, overlap the beams five holes. Then add an additional beam on the pegs extending.
- Result: A more ridged structure.

Note: Alternate the direction of the 3M blue peg ridge can reduce separation. Peg ridge can be used to help in keeping pegs in place when removable attachments.

Angular beams

- An angular beam with three holes before and seven holes after the bend is a 3×7 angular beam.

- $3 \times 590^{\circ}$ angular beam has holes at both ends.
- $2 \times 490^{\circ}$ angular beam has a hole at one end and cross axle at the other.
- All other angular beams have cross axles at both ends.

Angular beams

-4141270: Angular Beam 4X290

- 4211713: Angular Beam 3X5 90° (Med. Grey)
- 4585040 Angular Beam 3X5 90° (White)
- 4211624: Angular Beam 3X7
- 4509912: Angular Beam 4X4

Angular beams

-4495412: Double Angular Beam 3X7

- 4112282: Technic Angular Beam 4X6
- 4552347: T-Beam 3X3 with Hole

Angular combinations

Frames

- Frames are referred to based on their shape:
- O frame
-H frame
- Frames allow building in multiple directions and can add strength to structures.

4539880: Beam Frame 5X7

4539880: Beam Frame 5X7

Thin beams

- Are half the width of a normal beam.
- Useful for adding functions or styling to your robots.

6009019: Triangle

4142236: Lever 1X4, Without Notch

4112287: Technic Lever 3X3M, 90*

4503417: Technic 5M Half Beam*

Structural frames

- Hands-on activity

Make a Structural Frame

- Using two 11 M beams, two 5M beam, and four black pegs, make a structural frame as shown.

Strength Test of Structural Frame

- Hold the bottom and press on one side of the frame.
- What happens to the frame?

Adding Strength to the Structural Frame

- Using two 11 M beams, two 3X5 90° angular beams, and six black pegs, make a structural frame as shown.
- Hold the bottom and press on one side of the frame.
- What happens to the frame this time?

Reinforcing with angles

- A beam angled between the two beams will also improve the structural strength.

Axles and connectors

■ AXLES ■ BUSHINGS ■ CROSS BLOCKS

Axles

- Length is same as a Lego ${ }^{\circledR}$ brick, the smallest is called a 2 M axle (with groove) and commonly red or black.
- The odd number axles are typically grey (3, 5, 7M axle).
- The even number axles are typically black (4, 6, 8M axle).

```
##2)
#3
4
(5)
(6)
(7)
(8)

\section*{Specialty Axles}
- Axle with end stop (5.5 M)
- Cross axle with end stop (4M and 8M)
- Cross axle with end knob (3M)

Double Cross Axle


4560177: Cross Axle 4M With End Stop


4499858: Cross Axle 8M With End Stop


6031821: Cross Axle 3M with End Knob

\section*{Bushings}
- 4239601: Cross Axle Half Bushing
- 4211622: Cross Axle Bushing
- 4560175: Double 3M Bushing


Cross Axle Half Bushing


Cross Axle Bushing


Double 3M Bushing

\footnotetext{
Bushings can be used as spacers to prevent tires from hitting beams or other structures.
}

\section*{Cross blocks}
- 4173668 - Cross Block 90
- 4121667 - Double Cross Block
- 4140430 - Technic Cross Block 2XI (Mickey)
- 4162857 - Technic Cross Block Fork 2X2 (Minnie)


Cross Block 90


Double Cross
Block


Cross Block \(2 \times 1\) (Mickey)


Cross Block \(2 \times 2\) (Minnie)

\section*{Additional cross blocks}
- 4210857: Cross Block 90, 3M
- 4502595: 3-Branch Cross Axle Cross Hole
- 4538007: Cross Block 3X2


Cross Block 3X2

\section*{Cross blocks combinations}
- This cross block combination allows two beams to be mounted smooth sides together.


\section*{Cross blocks combinations}
- Using this cross block combination allows mounting two beams at a right angle.


\section*{Cross block combinations}
- This combination of cross blocks also allows mounting two beams at a right angle.


\section*{Tip for removing small cross axle connector}
- Use long axle to push small axle through.


\section*{Cross blocks}
- Hands-on activity


\section*{Cross blocks: Hands-on parts needed}
-7M beams (2)
- Technic Cross Block 2X1 (Mickey) (2)
- Technic Cross Block Fork 2X2 (Minnie) (2)
- Black peg with Friction (8)
- 2 M Cross Axle with Groove (2)


\section*{Cross block building instructions}
1. Align Technic Cross Block 2 X 1 (Mickey) with Technic Cross Block Fork 2X2 (Minnie).
2. Insert 2 M Cross Axle with Groove.
3. Repeat to make a second cross block assembly.

\section*{Cross block building instructions}
4. Insert four black pegs into the cross block assembly.
5. Repeat on second cross block assembly.


\section*{Cross blocks building Instructions}
6. Place 7 M beam on the pegs in cross blocks.
7. Place second 7 M beam on the pegs in cross blocks.


\section*{Bracing}
- LEGO \({ }^{\circledR}\) pieces are designed to separate when pulled. When intentional it is called disassembly.
- Sometimes assemblies pull apart unintentionally simply sitting there or while operating. This is called structural failure.
- One solution for structual failure is bracing. Bracing can add strength with minimum weight increase.

\section*{Bracing - Sample 1}
- Bracing uses combinations of LEGO \({ }^{\circledR}\) parts at right angles.

\section*{Bracing}
- Hands-on activity


\section*{Bracing: Hands-on parts needed}
- 11 M beams (3 ea.)
- 5M beam (1 ea.)
- Double cross block (2 ea.)
- 5M axle (2 ea.)
- Black peg with friction (2 ea.)

\section*{Bracing: Hands-on}


Step 1


Step 2

Step 3

\section*{Bracing - Sample 2}


\section*{Bracing - Sample 2}


\section*{Axle connectors}
- 4107085: Angle Element, 0 Degrees [1]
- 4107783: Angle Element, 180 Degrees [2]
- 4107767: Angle Element, 90 Degrees [6]
- 4513174: Cross Axle, Extension, 2M
- 4526985: Tube W/Double \(\varnothing 4.85\)


Axle connectors are identified with a number


Angle Element, 0 Degrees [1]


Angle Element, 180 Degrees [2]


Angle Element, 90 Degrees [6]


Cross Axle, Extension, 2M


Tube W/Double \(\varnothing 4.85\)


\section*{Gears}
- Gears are rotating parts with teeth that mesh with other parts with teeth.
- LEGO \({ }^{\circledR}\) gears are identified by the number of teeth followed by a "z".
- Most gears are 1M thick

Combination Reference: http://gears.sariel.pl/

\section*{Gears}
-6012451 - Gear Wheel 8z
-4177431 - Double Conical Wheel 12z
- 4640536-Gear Wheel 16z
- 4514558-Gear Wheel 24z
- 4285634 - Gear Wheel 40z


Gear Wheel 8z


Double Conical Wheel 12z


Gear Wheel 16z


Gear Wheel 24z


Gear Wheel 40z

\section*{Gears}
-4565452 - Conical Wheel 12z
-4177430 - Double Conical Wheel 20z 1M
- 4255563 - Double Conical Wheel 36z
- 4211510 - Worm gear


Conical Wheel 12z


Double Conical Wheel 20z 1M


Double Conical Wheel 36


Worm gear

\section*{Gears}
- Hands-on activity


\section*{Gears}


Gear Ratio: the difference between the rates at which the last (driven) and first (driver) gears rotate.

\section*{Gears: Hands-on parts needed}
- \(24 z\) gear
- \(8 z\) gear
- 3 m axle
- 4m axle
- 5m axle
- Double Cross Block
- Bionicle Eye
- Half-bushing
- bushing


\section*{Gears: Building instructions}
1. Insert 4 M axle into the \(24 z\) gear.
2. Insert the gear assembly through the fourth hole in the beam.

4M AXLE

Step 2

\section*{Gears: Building instructions}
3. Install bushing on the axle.
4. Install double cross block on the axle behind the bushing.
5. Insert the 3 M axle into the other end of the double cross block.


\section*{Gears: Building instructions}
6. Insert a 5 M axle through the half bushing, the beam, and the \(8 z\) gear.
7. Install the bionicle eye on the end of the 5 M axle.


\section*{Gears: Build Check}

Does your project look like this?


\section*{How is gear ration calculated?}

A simple equation is used to find the ratio of your gearing system:

Number of Teeth on the Driven gear
Number of Teeth on the Driver gear

For this example:
Driven gear \(8 z / 24 z\) Driver gear \(=1 / 3\) or 1:3

\section*{How is gear ratio expressed?}
- Gear Ratios are expressed as fractions and can be written a number of ways:
- 1 to 3
- 1/3
- 1:3 most commonly used
- Remember that the driven gear will turn in the opposite direction of the driver gear

\section*{Gear ratio: Testing}
- Turn the crank slowly one rotation and count the number of rotation of the bionicle eye.

How many turns did 0
 the bionicle eye make

\section*{Gear ratio: Testing}
- Switch the handle and Bionicle eye.

How many turns did the bionicle eye make

\(24 Z\) GEAR
HANDLE

\section*{Gear combinations}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Teeth & \(\mathbf{8}\) & \(\mathbf{1 2}\) & \(\mathbf{1 6}\) & \(\mathbf{2 0}\) & \(\mathbf{2 4}\) & 36 & 40 \\
\hline \(\mathbf{8}\) & \(1: 1\) & & & & \(1: 3\) & & \(1: 5\) \\
\hline \(\mathbf{1 2}\) & & & & \(3: 5\) & & \(1: 3\) & \\
\hline \(\mathbf{1 6}\) & & & \(1: 1\) & & & & \\
\hline \(\mathbf{2 0}\) & & & & & \(5: 6\) & & \\
\hline \(\mathbf{2 4}\) & & & & & \(1: 1\) & & \(3: 5\) \\
\hline \(\mathbf{3 6}\) & & & & & & \\
\hline \(\mathbf{4 0}\) & & & & & & \(1: 1\) \\
\hline
\end{tabular}
\(\square\) Stable
combination \(\square\) Unstable
combination

\section*{Gear combinations}
http://gears.sariel.pl/

\(24 z\) to \(24 z\) (1:1)
\(20 z\) to \(24 z(5: 6)\)
\(24 z\) to \(8 z(3: 1)\)


\section*{Gears: Motion Transfer}
- Motion transfer is using a circular motion action to produce a linear motion.
- What is linear motion?

\section*{LINEAR MOTION}
- How can you make linear motion using gears that turn in circles?

\section*{Motion Transfer}
- Hands-on activity


\section*{Motion Transfer: Building instructions}
1. Place a 5 M axle in a \(24 z\) gear.
2. Insert the 5 M axle and gear into fifth hole in an 11 M beam.
3. Insert gray non-friction peg into a hole on gear.
4. Insert gray non-friction peg in last hole on 11 M beam on the long end.


\section*{Motion Transfer: Building instru ions}
5. Insert a second 11 M beam (red) third hole on non-friction gray peg on the first beam.
6. Insert gray non-friction peg in last hole of 7M beam.
7. Insert 7M beam (yellow) on gray non-friction pegs on gear and 11 M beam (red).


\section*{Motion Transfer: Building instructions}
8. Insert bushing on 5 M axle on the opposite side of 11 M beam.
9. Insert double cross block on 5M axle.
10. Insert a 5 M axle into double cross block.

\section*{Motion Transfer: Building instructions}
- Insert bushing on 5M axle on the opposite side of 11 M beam.
- Insert double cross block on 5M axle.
- Insert second 5M axle into double cross block.


\section*{Motion Transfer: Testing}
- Rotate the handle (5M axle).
- What happens to the forward (red) 11 M beam?


\section*{Linear Motion with a motor}
- Adding a motor to drive linear motion is simple.
- The \(24 z\) gear and drive motor both have three holes.


\section*{Gear Trains - Direction}

- An idler gear is one between two or more gears to change the direction of the output axle without changing the gear ratio.

\section*{Gear Trains - Ratio}


\section*{Gears: Using worm gears}
- Worm gears can be used to create linear motion too. This Forklift attachment is one example.
- Rotating the gear causes the forklift arms to travel up and down.
- Notice that the \(8 z\) gear does not rotate.

\section*{Caster, Wheels, and Miscellaneous}


\section*{Caster}
- 6023956: LEGO \(^{\circledR}\) Steel Ball
- 4610380: Power Joint


\section*{Wheels (Tyres), Rims, and Tracks}
- The LEGO \({ }^{\circledR}\) Group is one of the world's largest tyre manufacturers.


6035364: Tyre Low Wide \(56 \times 28\)


4634091: Rim Wide \(43.2 \times 26\) with 6 Holes


6014648: Track Element, 5X1.5


4582792: Sprocket, \(\varnothing, 40,7\)

\section*{Simple Wheel Matching}
- Assembly the two wheels on an axle with a bushing in the middle.
- Align the bushing with the line on a slight slope with the axle at \(90^{\circ}\) to the line.
- Let the wheel assembly roll down the slope and watch if the bushing moves off the line.


\section*{Miscellaneous}
- 4652236 Upper Part For Turntable 28z
- 4587275: Wedge-Belt Wheel Ø24
- 6028041: Tyre For Wedge-Belt Wheel
- 4173941: Bionicle Eye
- 4563044: 2X1X3 Steering Knuckle Arm


Upper Part For Turntable 28z


Wedge-Belt Wheel Ø24


Tyre For
Wedge-Belt Wheel


Bionicle Eye


2X1X3 Steering Knuckle Arm

\section*{Decorative elements}
- Are just that. Have been used for a number of things.


4566251 Left
Panel 3X5


4566249 Right Panel 3X5


4541326 Left Panel 5X11


4566249 Right Panel 3X5


\section*{Disassembly Time}
- Please take apart the project and put the all the LEGOS \({ }^{\circledR}\) in the plastic bag.
- Remember, we need the LEGOS \({ }^{\circledR}\) pieces for the next class.

\section*{How many?}
- Take six eight-stud LEGO bricks \((2 \times 4)\) - how many ways can they be combined?

- With the aid of computers, the exact number of combinations has been calculated as 915,103,765!
- Just so you know, two eight-stud LEGO bricks can be combined in 24 different ways and three eight-stud LEGO bricks in 1,060 ways.

\title{
Everything is awesome!
}

Corrections and Comments: james.brodnick@gmail.com
```

