\#8 Into Orbit - Distance Lab

Forward with Move Steering block

1. Find average distance of three rotations.

Power	First Trial	Second Trial	Third Trial	Average
$\%$				

2. Calculate the average distance for one rotation(1R) = Average of 3 distances $\div 3$

Power	Three rotations		Divide by 3	Distance travel from one rotation (1R)
$\%$	cm	$\div 3$		cm
$\%$	cm	$\div 3$		cm
$\%$	cm	$\div 3$	cm	
$\%$	cm	$\div 3$		cm

3. Calculate the Rotation per centimeter $\mathrm{RCM}=1 \div 1 \mathrm{R}$ or

Degree per centimeter $\mathrm{DCM}=360 \div 1 \mathrm{R}$

Power	\%	\%	$\%$	\%
Rotations/cm (RCM)	rotations		rotations	rotations

4. Find the rotation or degrees for measured distance:

Example = Robot needs to travel 10 cm at 50 power.
\# of rotations $=\mathrm{R} / \mathrm{cm} \times 10$
\# of degrees = D/cm x 10

