#8 Into Orbit - Distance Lab

Forward with Move Steering block

1. Find average distance of three rotations.

I ma average distance of three retations.				
Power	First Trial	Second Trial	Third Trial	Average
%				
	cm	cm	cm	cm
%				
	cm	cm	cm	cm
%				
	cm	cm	cm	cm
0,				
%				
	cm	cm	cm	cm

2. Calculate the average distance for one rotation(1R) = Average of 3 distances \div 3

			<u> </u>
Power	Three rotations	Divide by 3	Distance travel from one rotation (1R)
%	cm	÷3	cm
%	cm	÷ 3	cm
%	cm	÷ 3	cm
%	cm	÷ 3	cm

3. Calculate the Rotation per centimeter RCM = $1 \div 1R$ or Degree per centimeter DCM = $360 \div 1R$

Power	%	%	%	%
Rotations/cm (RCM)	rotations	rotations	rotations	rotations
Degrees/cm (DCM)	degrees	degrees	degrees	degrees

4.	Find the	rotation of	or dearees	for measured	distance:

Example = Robot needs to travel 10 cm at	t 50 power.
# of rotations = R/cm x 10	# of degrees = $D/cm \times 10^{-1}$