Chassis Design

An Overview

What can be used to build your robot?

- Read the Robot Game Rules! (Page 19)
- Everything you compete with must be made of LEGO® elements in original factory condition, except LEGO® string and tubing, which you may cut to length.
- Exception: You can reference a paper list to keep track of programs and a bin to carry your robot.
- There are no restrictions on the quantities or sources of non-electric LEGO® elements, except that factory-made wind-up/pull-back "motors" are not allowed. Pneumatic elements are allowed.

What can be used to build your robot?

- On the robot, marker may be used for owner identification in hidden areas only.
- Paint, tape, glue, oil, dry lubrication, etc. are not allowed.
- Stickers are not allowed except LEGO® stickers applied per LEGO® instructions.

What can be used to build your robot?

- The electric elements used must be the LEGO® MINDSTORMS® type, and the total number of electric elements you may use in one match is limited as follows:
- One Controller (RCX, NXT, or EV3)
- Four Motors Must be MINDSTORMS® motors
- A fifth motor is not permitted in the competition area (you may have unlimited spare motors at the pit area)
- Unlimited Sensors
 - Must be Touch, Light, Color, Rotation, Ultrasonic, or Gyro sensor
 - Must be LEGO® manufactured MINDSTORM® sensors

Engineering Design Process

Ask

- What is my design supposed to do?
- How will I test my design?
- How will I know it is doing what I want?
- What could keep me from making it do that?

Engineering Design Process

Imagine

- Apply knowledge and creativity to brainstorm ideas.
- Select one to try.

Plan

- Plan idea with sketches, diagrams, drawings and notes.
- Plan materials and resources.

Engineering Design Process

Create

- Create a prototype.
- Test the prototype and record the results.

Design Process

Improve

- Analyze design and test results.
- What change would make the biggest impact on meeting the goal?
- Apply knowledge and creativity to brainstorm ideas.

Common Attributes of *FLL*® Robots

- Two motors are used for the drive wheels, one on each side for turning
- The third and fourth motors for attachments such as a vertical lift, arm mechanism, or attachments
- Multiple attachments for different missions
- Robots must fit inside the base, including 12" height requirement

Attachments are removable - Mechanisms are not

FLL® Robot Design Rubrics

FLL® Robot Design Rubrics

	Beginning	Developing	Accomplished	Exemplary
Du	rability Evid	dence of structural integrity; ab	ility to withstand rigors of comp	petition
N D	quite fragile; breaks a lot	frequent or significant faults/repairs	rare faults/repairs	sound construction; no repairs
2001	593	nomic use of parts and time; ea		
N D	excessive parts or time to repair/modify	inefficient parts or time to repair/modify	appropriate use of parts and time to repair/modify	streamlined use of parts and time to repair/modify
D	repair/modify echanization Abi	repair/modify	time to repair/modify ve or act with appropriate spee	time to repair/modify

Chassis Durability

Evidence of structural integrity; ability to withstand rigors of competition

Accomplished: Rare faults/Repairs

Exemplary: Sound Construction; No Repairs

- Things to ask about your robot:
- Does my robot stay together during routine handling?
- Does my robot have excessive flex when moving?
- Does my robot wheels remain in contact with the mat?

Chassis Mechanical Efficiency

Economic use of parts and time; easy to repair and modify Accomplished: Appropriate use of parts and time to modify/repair Exemplary: Streamlined Use of Parts and time to repair/modify

- Can the batteries be change/charged easily?
- Can I see the display screen and push the buttons?
- Can I plug/unplug wires easily?
- Are the wires in the way?
- Can attachments be changed easily?
- How long does it take to set up my robot in base?

Chassis Mechanical Efficiency

- Robot Setup Know Where to Start!
- The base square is big, where does the robot go?
- When positioning the robot, the angle the robot is heading is very important. If the heading is off by 1 degree, four feet from the start, the robot will be off course by over 1 $\frac{1}{2}$ inches
- Even robots that self correct position need to have a consistent starting point
- Proper starting position includes powered arms and attachments
- Alignment tools (jigs) help if built properly

Chassis Mechanization

Ability of robot mechanisms to move or act with appropriate speed, strength and accuracy for intended tasks (propulsion and execution)

Accomplished: Appropriate balance of speed, strength, and accuracy on most tasks.

Exemplary: Appropriate Balance of Speed and Strength on Every Task

Chassis Mechanization

- Does the robot have the right wheels?
 - Big wheels are faster, can move over obstacles, but can be less accurate.
 - Wider tires have more friction than skinny tires making turning less repeatable
- Where is the Center of Gravity (CG) of the robot?
 - Is the robot top heavy?
 - How will the robot's CG change when it picks up loads?
 - Do the robot avoid tipping on slopes, sharp turns, stops, or in collisions
- What happens when the robot backs up?

Chassis Basics

Chassis styles

- 2 wheels and skid(s) usually fine if no ramps to climb
- 2 wheels and caster wheel (3-point design) caster wheel can change robot course (supermarket carts)
- 2 wheels and ball (3-point design)
- 4 wheels (4-point design) often one pair is without tires to slide while pivoting
- 6 wheels Larger than most FLL robots, smaller base this season
- Treads stable, can be hard to predict turns
- Exotics walking, time consuming to build, inconsistent movement

Chassis mobility

- Size of chassis it has to navigate around the obstacles on robot field
- A bigger chassis require more motor power draining batteries quicker
- Remember, after the robot is built, you still need to get to the battery compartment or charging plug on the brick
- Chassis will need places for attachments to attach
- Wires from brick to motors/sensors should be tucked away so they don't catch on anything

Chassis mobility

- Will gears help?
- Little Gear on motor and big gear on attachment or wheel
 - Slower
 - More Precise
 - More Torque
- Big gear on motor and little gear on attachment or wheel
 - Faster
 - Less Precise
 - Less Torque

Wheels, Tracks and Axle tips

- Tracks
 - Low Friction/High Slippage
 - Motion and Turns not repeatable
- Large wheels go further per revolution
 - Friction varies with different wheels
 - Consider how they pivot turn and go straight
- Wheel Axle Support
 - More support, less wiggle/sag
 - Support from both sides is best

Wheel support

Navigation

Building to go straight

- Straight motion
 - Wheel balance
 - Wheel alignment

Robot placement

- Jigs / Alignment tools
 - Align with solid edges of robot, not by sight
 - Provide three points of contact to get both the angle and front/back positions correct
 - Jig / Alignment tool can't interfere with robot as it begins to move
 - Table walls may vary. South edge of mat is always against the south wall, but east and west are center, and north falls wherever.

Three types of turns

- The robot will turn when one wheel moves at a different speed from the other
- The greater the difference in wheel speeds, the tighter the turn
- Pinpoint robot spins around a point (tank turn)
- Pivot robot turns about a fixed wheel
- Curved robot turns about an arc

Pivot turn

Pivot turn

Pinpoint turn

Curved turn

Steering

- Consistent steering
 - Remove tires from rims
 - Reduce friction
 - Brake stationary wheel on pivot turns

Navigation methods

- Wall following
- Horizontal guide wheels, approach wall at shallow angle
- Line following
- Use the light generated by the light sensor itself
- For greatest accuracy, box light sensors to eliminate (as much as possible) ambient light
- Calibration can help to reduce the effect of changes in external lighting, but is hard to eliminate
- Light sensors tend to hunt pivoting on one wheel (instead of two) tends to be less
 jittery and make faster progress
- Take advantage of knowing the proper course for the mission not a general purpose line follower

Online

- Lego Educational: http://legoeducation.us/
 Go to the "SHOP" menu and then select "LEGO Spare Parts and Accessories"
- BrickLink: http://www.bricklink.com
- Brick Owl: http://www.brickowl.com/
- Gears: http://gears.sariel.pl/
- LEGO® Digital Designer: http://ldd.lego.com/en-us/ CAD for LEGOs®
- Techbrick: http://www.techbrick.com/
- BrickSet: http://brickset.com/browse