Chassis & Attachments 101

Chassis Overview

1

Introductions

- Rest rooms location.
- Food and Drink: Complementary bottled water. Snacks available for purchase from UME FTC® teams.
- Cell phones.

Today presentation available at:

http://www.roboplex.org/fll

What can be used to build your robot?

- Read the Robot Game Rules! (Page 16)
- Everything you compete with must be made of LEGO® elements in original factory condition, except LEGO® string and tubing, which you may cut to length.
- Exception: You can reference a paper list to keep track of programs and use a bin to carry your robot.
- There are no restrictions on the quantities or sources of non-electric LEGO[®] elements, except that factory-made wind-up/pull-back "motors" are not allowed.

What can be used to build your robot?

- LEGO[®] pneumatic elements are allowed.
- On the robot, marker may be used for owner identification in hidden areas only.
- Paint, tape, glue, oil, dry lubrication, etc. are not allowed.
- Stickers are not allowed except LEGO[®] stickers applied per LEGO[®] instructions.

<section-header>KB-16ker. You are showed up to four introductant notice in any particular Match.
I.e. the manual eased match is how to be a sub-any topological particular match is a sub-any topological particular partitar particular particular particul

R85 - Other Electrico Electronic Talinga - No offer electricolectoric things are allowed in the screptision area for Weston-related activity. Ecospt: LEDC wrea and converter cables are allowed as needed. Ecospt: Allowable power sources are one controller's power pack or size AA batteries.

Robot Gerne

Page 17

Rule Changes for 2016

- There is no "Safety" region. The whole quarter-circle region is all Base. The inner curved line is meaningless now.
- On-Field Storage outside Base no longer allowed.
- The ceiling of Base has been removed, so there is no limit on how tall a Robot may be.
- Transported objects partly in Base when the Robot is interrupted (moved by hand) are always given to the Ref, and are out of play.
- Stranded objects partly in Base are always given to the Ref, and are out of play.
- If the Robot is interrupted transporting an object not completely in Base, the Ref removes the object from play no matter what.
- There is no "Junk" penalty.

What can be used to build your robot?

- The electric elements used must be the LEGO[®] MINDSTORMS[®] type, and the total number of electric elements you may use in one match is limited as follows:
- One Controller (RCX, NXT, or EV3)
- Four Motors Must be MINDSTORMS® motors
- A fifth motor is not permitted in the competition area (you may have unlimited spare motors at the pit area)
- Unlimited Sensors
 - Must be Touch, Light, Color, Rotation, Ultrasonic, or Gyro sensor
 - Must be LEGO® manufactured MINDSTORMS® sensors

Achieving Robot Performance

- Teams that are consistently top performers are always balanced in robot design, programming, and strategy.
- Teams will naturally be stronger in one area, but to neglect the other areas will result in inconstant results.

Robot Design

Programming

Strategy

FLL[®] Core Values

Strategy

Great robot design + poor strategy = inconsistent scores

Fair robot design + good strategy = consistent scores

Engineering Design Process Ask Ask • What is my design supposed Imagine Improve to do? • How will I test my design? How will I know it is doing what I want? • What could keep me from Plan Create making it do that?

Engineering Design Process Ask Imagine Apply knowledge and Imagine Improve creativity to brainstorm ideas. • Select one to try. Plan • Plan idea with sketches, diagrams, drawings and notes. Plan Create • Plan materials and resources.

Design Process

Improve

- Analyze design and test results.
- What change would make the biggest impact on meeting the goal?
- Apply knowledge and creativity to brainstorm ideas.

Common Attributes of *FLL*[®] Robots

- Two motors are used for the drive wheels, one on each side for turning
- The third and fourth motors for attachments such as a vertical lift, arm mechanism, or attachments
- Multiple attachments for different missions
- Robots must fit inside the base, no height requirement this year

Attachments are removable - Mechanisms are not

Robot Design Executive Summary and *FLL*[®] Robot Design Rubric

The Robot Design Executive Summary and Robot Design Rubrics are available at http://www.firstinspires.org

Robot Design Executive Summary (RDES)

Design Details Outline

- 1. Fun: Describe the most fun or interesting part of robot design as well as the most challenging parts. If your robot has a name, who chose the name and why.
- 2. Strategy: Explain your team's strategy and reasoning for choosing and accomplishing missions.
- 3. Design Process: Describe how your team designed your robot and what process you used to make improvements to your design over time.
- 4. Mechanical Design: Explain to the judges your robot's basic structure, how you make sure your robot is durable and how you made it easy to repair or add/remove attachments.
- 5. Programming: Describe how you programmed your robot to ensure consistent results.
- 6. Innovation: Describe any features of your robot design that you feel are special, different or especially clever.

FLL® Robot Design Rubrics

	Beginning	Developing	Accomplished	Exemplary
Du	rability Evic	lence of structural integrity; ab	ility to withstand rigors of com	petition
N D	quite fragile; breaks a lot	frequent or significant faults/repairs	rare faults/repairs	sound construction; no repairs
Me	Alechanical Efficiency Economic use of parts and time; easy to repair and modify I excessive parts or time to inefficient parts or time to appropriate use of parts and streamlined use of parts and			
D	repair/modify	repair/modify	time to repair/modify	time to repair/modify
Me		ity of robot mechanisms to mo intended tasks (propulsion and	ove or act with appropriate spee execution)	ed, strength and accuracy
N D	imbalance of speed, strength and accuracy on most tasks	imbalance of speed, strength and accuracy on some tasks	appropriate balance of speed, strength and accuracy on most tasks	appropriate balance of speed strength and accuracy on every task

http://www.firstinspires.org/resource-library/fll/judging-rubrics

Chassis Durability

Evidence of structural integrity; ability to withstand rigors of competition Accomplished: Rare faults/Repairs Exemplary: Sound Construction; No Repairs

- Things to ask about your robot:
- Does my robot stay together during routine handling?
- Does my robot have excessive flex when moving?
- Does my robot wheels remain in contact with the mat?

Chassis Mechanical Efficiency

Economic use of parts and time; easy to repair and modify Accomplished: Appropriate use of parts and time to modify/repair Exemplary: Streamlined Use of Parts and time to repair/modify

- Can the batteries be change/charged easily?
- Can I see the display screen and push the buttons?
- Can I plug/unplug wires easily?
- Are the wires in the way?
- Can attachments be changed easily?
- How long does it take to set up my robot in base?

Chassis Mechanical Efficiency

- Robot Setup Know Where to Start!
- The base is bigger than it appears, where does the robot go?
- When positioning the robot, the angle the robot is heading is very important. If the heading is off by 1 degree, four feet (half the length of the field) from the start, the robot will be off course by over 1 ½ inches

Chassis Mechanical Efficiency

- Even robots that self correct position need to have a consistent starting point
- Proper starting position includes powered mechanisms and attachments, everything must start within base
- Alignment tools, such as robot bumpers and jigs help if built properly and consistently used

Chassis Mechanization

Ability of robot mechanisms to move or act with appropriate speed, strength and accuracy for intended tasks (propulsion and execution) Accomplished: Appropriate balance of speed, strength, and accuracy on most tasks.

Exemplary: Appropriate Balance of Speed and Strength on Every Task

Chassis Mechanization

- Does the robot have the right wheels?
 - Big wheels are faster, can move over obstacles, but can be less accurate.
 - Wider tires have more friction than skinny tires making turning less repeatable
- Where is the Center of Gravity (CG) of the robot?
 - Is the robot top heavy?
 - How will the robot's CG change when it picks up loads?
 - Do the robot avoid tipping on slopes, sharp turns, stops, or in collisions
- What happens when the robot backs up?

Chassis Basics

Chassis styles

- 2 wheels and skid(s) usually fine if no ramps to climb
- 2 wheels and caster wheel (3-point design) caster wheel can change robot course (supermarket carts)
- 2 wheels and caster ball (3-point design)
- 4 wheels (4-point design) often one pair is without tires to slide while pivoting
- 6 wheels Larger than most FLL robots, robot must fit in base.
- Treads stable, can be hard to predict turns
- Exotics walking, time consuming to build, inconsistent movement

Chassis mobility

- A bigger chassis require more motor power draining batteries quicker
- Remember, after the robot is built, you still need to get to the battery compartment or charging plug on the brick
- Chassis will need places for attachments to attach
- Wires from brick to motor and sensors should be tucked away so they don't catch on anything

Chassis mobility

- Will gears help?
- Little gear on motor and big gear on attachment or wheel
 - Slower
 - More precise
 - More torque
- Big gear on motor and little gear on attachment or wheel
 - Faster
 - Less precise
 - Less torque

Wheels, Tracks and Axle tips

- Tracks
 - Low Friction/High Slippage
 - Motion and Turns not repeatable
- Large wheels go further per revolution
 - Friction varies with different wheels
 - Consider how they pivot turn and go straight
- Wheel Axle Support
 - More support, less wiggle/sag
 - Support from both sides is best

Wheel support

Wheel Support - Poor

 Wheels should be mounted close to supporting beam, but not rubbing against it

> 2 full bushings and 1 half bushing

Wheel Support - Better

1 halve bushing

3M Beam with 2 black friction pegs

Wheel Support - Best

 Beams on both sides provides the best support

Navigation

Building to go straight

- Straight motion
 - Wheel balance
 - Wheel alignment

Robot placement

- Jigs / Robot bumpers / Alignment tools
 - Align with solid edges of robot, not by sight
 - Provide three points of contact to get both the angle and front/back positions correct
 - Jig / Alignment tool can't interfere with robot as it begins to move
 - Table walls may vary. South edge of mat is always against the south wall, but east and west are center, and north falls wherever

Three types of turns

- The robot will turn when one wheel moves at a different speed from the other
- The greater the difference in wheel speeds, the tighter the turn
- Pinpoint robot spins around a point (tank turn)
- Pivot robot turns about a fixed wheel
- Curved robot turns about an arc

Pivot turn left

Powering the right wheel while breaking the left will cause the robot to turn right.

Pivot turn right

Powering the left wheel while breaking the right will cause the robot to turn right.

Consistent Steering Tips

- Reduce friction
- Remove tires from rims
- Use EV3 caster in place of non-powered wheels
- Brake stationary wheel on pivot turns

Pinpoint turn

Powering the wheels in opposite directions will rotate the robot around the mid-point of the axle.

Curved turn

Powering one wheel less will turn the robot in the direction of that wheel. The great the difference in power the more the turn.

Navigation methods

Wall following

Horizontal guide wheels
Approach wall at shallow angle

EV3 Gyro

Countering Draft (Covered in Programming clinic)

Navigation methods

Line following

- For greatest accuracy, box light sensors to eliminate (as much as possible) ambient light. Use the light generated by the light sensor itself
- Calibration can help to reduce the effect of changes in external lighting, but is hard to eliminate
- Light sensors tend to hunt pivoting on one wheel (instead of two) tends to be less jittery and make faster progress
- Take advantage of knowing the proper course for the mission not a general purpose line follower

Online

- Lego Educational: http://legoeducation.us/ Go to the "SHOP" menu and then select "LEGO Spare Parts and Accessories"
- BrickLink: http://www.bricklink.com
- Brick Owl: http://www.brickowl.com/
- Gears: http://gears.sariel.pl/
- LEGO® Digital Designer: http://ldd.lego.com/en-us/ CAD for LEGOs®
- Techbrick: http://www.techbrick.com/
- BrickSet: http://brickset.com/browse