
FTC New Platform

Workshop
presented 

By

FTC TEAM #8565



New Platform Software

Samuel Liu / Brandon Wang



New Platform Software 
Part I

Samuel Liu



Overview

• Installation

• Android Studio

• Event Driven Programming Model

• Run_To_Position Demonstration

• Tank Drive vs. Steering Drive



Install Java 7 SDK



Install Android Studio
https://developer.android.com/sdk/index.html



Install Android SDK (API 19)

Run Android Studio(it may have started), choose Configure -> 
SDK Manager. 



Android SDK Manager

ZTE phone runs Android version 4.4.4 which has API 19.



Install FTC SDK

https://github.com/ftctechnh/ftc_app



Import Project

Restart Android Studio and choose “Import Project”.



Project Build 

Android Studio will automatically start to compile and build.

It takes a few minutes; Android Studio indexes the FTC SDK 
and won’t allow any more builds until done.

Now you are in Android Studio and ready 
to create your own robot program!



Android Studio Layout

Project View

Work Area

Message View



Project View

The project view is 
where you can 
navigate through 
your Android 
projects and classes.



Work Area



Message View



Event Driven Programming

• A programming paradigm in which the flow of the program 
is determined by events such as user actions (mouse clicks, 
key presses), sensor outputs, or messages from other 
programs/threads

• In the FTC SDK context, the event is the looping event 
generated from framework 

• Different from RobotC’s linear programming model where 
code is executed sequentially from beginning to end



OpMode

OpMode: Different modes a user can run the 
robot in (e.g., Autonomous, Teleop) and written 
in one Java Class

Your OpMode Java Class must extend the 
superclass in FTC SDK:

com.qualcomm.robotcore.eventloop.opmode.OpMode

public class TankDriveOp extends OpMode {



Registering an Op Mode

For the Driver Station App to recognize your op mode, you need 
to register it in FtcOpModeRegister Java Class.

BE CAREFUL – The opmode list message between driver 
station and robot controller can only hold 256 bytes.



The Life Cycle of an Op Mode

init() – Used to perform initialization tasks, can only be performed 
once. Triggered when “arm” button pressed on the driver station.

start() – The difference between this and init() is that this mode is 
triggered when the op mode starts. You can also run initialization 
tasks, they are executed right before the loop.

loop() – This part of the code is regularly executed, every 10 to 20 
milliseconds, this makes up the main body of the op mode.

stop() – When the program is stopped, the code in this block is 
executed. This is used for cleanup after running through an op mode.



Creating Your Own OpMode

Right-Click on the NullOp
class and select Copy, then 
Right-Click opmodes package 
and select Paste



Writing logic for Your Own Op Mode

Start filling in your own code 
in init() and loop() methods



Register Your Own Op Mode



State Machine Programming



State Machine Programming



Run_To_Position

• Set the motor with Run_To_Position mode in init() method



Run_To_Position

• Set the target position for the motor in loop() method



Run_To_Position Demo



Tank Drive vs. Steering Drive

Tank Drive:
• Allows for manual control over both wheels of 

the robot
• Uses both joysticks

Steering Drive:
• Manual control over the whole robot, not 

individual wheel
• Uses only 1 joystick



Common Initialization



Tank Drive Loop Method



Steering Drive Loop Method



New Platform Software 
Part II

Brandon Wang



Overview

• Linear OpMode

• Sensor API 

• Code Structure

• GitHub Basics



Linear OpMode

• Introduced in the August 3rd Beta release.

• An alternative to the event-driven style.

• Closer to the old RobotC programming style.

• Runs commands sequentially.



The Details

• Must extend 
com.qualcomm.robotcore.eventloop.opmo
de.LinearOpMode class.

• Does not use public void init() or public 
void loop().

• Use public void runOpMode()

• Uses methods such as sleep()and
waitOneHardwareCycle() to wait before moving 
on to the next command.



LinearIR Example
package com.qualcomm.ftcrobotcontroller.opmodes;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode

public class LinearIrExample extends LinearOpMode {

@Override
public void runOpMode() throws InterruptedException {

// setup hardware devices

// wait for the start button to be pressed
waitForStart();

// wait for the IR seeker to detect a signal

// wait for the robot to center on the beacon

// now approach the beacon

// wait until we are close enough

// stop the motors

}
}



Current Linear OpMode Bug

“If you use the LinearOpMode class and you create a loop that does 

not have any interruptible statements within the loop, then when you 

try to stop the op mode while it is in your loop (by pushing the Stop 

button the driver station) the op mode will continue to run and the 

motors and servos can continue to operate! 

This is potentially dangerous and could also damage your robot. If you 

use a LinearOpMode class and use a loop inside, make sure you have 

an interruptible statement within your loop.



The Fix

In all loops, include an Interruptible statement 
including

• LinearOpMode.OpModeIsActive()
• LinearOpMode.waitForStart()
• LinearOpMode.waitOneHardwareCycle()
• LinearOpMode.sleep()
• Thread.sleep()



Touch Sensor API

• Works with both new and Legacy(NXT) 
touch sensors



Optical Distance Sensor APIPI



IR Seeker V3

Two different OpModes provided by FTC as 
Example:

1. IrSeekerOp – Basic event-driven op mode.

2. LinearIrExample - Linear Op version



Mounting

IR Sensor to CDIM

• Black wire = ground

• Plug into side with black strip of the Core Device 
Interface Module (CDIM)

On the Robot

• Sensor flat

• Curved section in middle facing directly forward



IR Seeker Test Setup

• Credit to FTC Forum user 2009FTC3491

40 cm (strength reading 0.3)



Angle Reading vs. Beacon Offset

• Credit to FTC Forum user 2009FTC3491

0

10

20

30

40

50

60

70

80

90

0 cm 1 cm 2cm 3cm 4cm 5cm

Offset

Offset



Class IrSeekerSensor Methods

abstract double getAngle()
Estimated angle in which the signal is coming from

abstract IrSeekerSensor.IrSeekerIndiv
idualSensor[]

getIndividualSensors()
Get a list of all IR sensors attached to this seeker.

abstract IrSeekerSensor.Mode getMode()
Get the device mode

abstract double getStrength()
IR Signal strength

abstract void setMode(IrSeekerSensor.Mode mode)
Set the device mode

abstract boolean signalDetected()
Returns true if an IR signal is detected

file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.IrSeekerIndividualSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.Mode.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.Mode.html
file:///C:%5CUsers%5Cbrandon%5CDocuments%5CGitHub%5Cftc_app-master-beta%5Cdoc%5Cjavadoc%5Ccom%5Cqualcomm%5Crobotcore%5Chardware%5CIrSeekerSensor.html


I2C Register



Bug

Jonathan Berling, Qualcomm:

The signalDetected() method is not working as expected 
with the IrSeekerV3. It should be looking at signal 
strength and not the angle.

• The signalDetected() method is looking at registers 4 
and 6 (angle) instead of 5 and 7 (signal strength).

• Qualcomm has admitted this is a bug, and will 
hopefully get fixed in the next release.



IrSeekerOp – Part 1

• public class IrSeekerOp extends OpMode {

final static double MOTOR_POWER = 0.25; // Higher values will 
cause the robot to move faster

final static double HOLD_IR_SIGNAL_STRENGTH = 0.20; // Higher 
values will cause the robot to follow closer

IrSeekerSensor irSeeker;

@Override
public void init() {
irSeeker = hardwareMap.irSeekerSensor.get("ir_seeker");

}
@Override
public void loop() {
double angle = 0;
double strength = 0;



IRSeekerOp - Part 2

// Is an IR signal detected?
if (irSeeker.signalDetected()) {
// an IR signal is detected

// Get the angle and strength of the signal
angle = irSeeker.getAngle();
strength = irSeeker.getStrength();

/*
Moves according to the direction and strength.

*/
} else {

// no IR signal is detected
motorRight.setPower(0.0);
motorLeft.setPower(0.0);

}
telemetry.addData("angle", angle);
telemetry.addData("strength", strength);

DbgLog.msg(irSeeker.toString());



Gyro
• 4? Options

• Hitechnic Gyro sensor 
– Suspected that the Android platform not fast enough to handle

• Motorola Motor G (Kit Kat)
– recommended device for international teams in next gen guide

which has a built in gyro sensor

• Bosch IMU as a gyro substitute
– Being tested by teams and results will be published to the FTC 

forum

• Possible new gyro sensor from Modern Robotics?



NXT Sensors

The old NXT Sensors
(Through the Core Legacy Module)



Future ModernRobotics Sensors
(From the website)

Sensors in the JavaDoc: Acceleration, Compass, Gyro,
Optical Distance Sensor, Touch, IR, Ultrasonic



Code Structure
• Note the “technicbots” 

package, and the MainRobot
class inside it.

• There will be a separate class 
for each robot.

• The MainRobot class 
contains methods specific to 
that robot that are used in 
multiple opmodes. 

• Eg. A state machine for 
controlling the Linear Slide 
on a particular robot.



Usage

Usage is as simple as importing

import com.technicbots.MainRobot;

Then, you can use the MainRobot class in your 
opmodes.

MainRobot.moveLinearSlide(LinearSlide1);



GitHub

• A Web-based Git repository hosting service.

• Offers distributed revision control and source 

code management (SCM) functionality among 

the team.

• Integrated into Android Studio.



Why Use GitHub? (A hypothetical 
example)

Say you and a team member are both updating 

pages on the same website. You make your 

changes, save them, and upload them back to the 

website. So far, so good. 

The problem comes when your team member is 

working on the same page as you at the same time. 

One of you is about to have your work overwritten 

and erased.



The Solution (Version Control)

But because GitHub keeps a “snapshot” of every 

change ever made, you and your coworker can 

each upload your revisions to the same page, 

and GitHub will save two copies. Later, you can 

merge your changes together without losing any 

work along the way. You can even revert to an 

earlier version at any time.



Github Explanation

• Two level setup

– Consists of your workspace/local repository, and 

the remote server.

• Workflow:

Step 1: Commit to local repository (Copy on 

computer)

Step 2: Push to remote server.



Recap

• Linear OpMode

• Sensor APIs

• Code Structure

• GitHub Basics

The afternoon session will cover how to setup 
and use GitHub for your team development.


