Omnidirectional Drive Systems

lan Mackenzie

2006 FIRST Robotics Conference

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive Mecanum Drive

Examples

Mecanum Drive
Hybrid
Swerve/Holonomic

Notes

References

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

Reference

Juestions

▶ Involved in FIRST since 1998

- ► High school student on Woburn Robotics (188) from 1998-2001
- University mentor for Woburn Robotics in 2002
- ► Recruiter/organizer for FIRST Canadian Regional in 2003
- ► Lead mentor for Simbotics (1114) in 2004, created SimSwerve crab drive system
- ▶ Planning committee/head referee for Waterloo Regional in 2005 and 2006
- Scheduling algorithm developer, inspector, Lego League referee. . .

► Tank drive: 2 degrees of freedom

Omnidirectional drive: 3 degrees of freedom

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

References

Advantages and Disadvantages

Omnidirectional **Drive Systems**

Ian Mackenzie

Advantages and Disadvantages

Mecanum Drive

Holonomic Drive Mecanum Drive

Mecanum Drive

4D > 4 P > 4 E > 4 E > 900

Advantages

Maneuverability

Disadvantages

- Complex
 - Heavy
 - Less robust
 - Tricky to control

 - (Usually) less pushing force

Strategies Favouring Omnidirectional Drive

Drive Systems
Ian Mackenzie

Omnidirectional

- Introduction
- Disadvantages
 Strategies

Types

Swerve Drive Holonomic Driv

Kinematics
Swerve Drive

Holonomic Drive Mecanum Drive

Mecanum E

Mecanum Drive
Hybrid
Swerve/Holonomi
Drive

Notes

References

Ouestions

- Primarily offensive robots
 - Not good at pushing others
 - Good at avoiding defense
 - If implemented correctly, easier to align robot to targets (e.g. balls to pick up, goals to score into)
- Confined spaces on the field
 - Raising the Bar in 2004
 - Analogous to industrial applications

Swerve Drive

- Independently steered drive modules
- Simple conceptually
- Simple wheels
- Otherwise complex to build
- Complex to program and control
- ► Maximum pushing force
- Either steered gearboxes or concentric drive

Omnidirectional Drive Systems

Ian Mackenzie

Introductio

Disadvantages
Strategies

ypes

Swerve Drive Holonomic Drive

Ginematics
Gwerve Drive
Holonomic Drive

Examples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

References

Holonomic Drive

- Wheels with 'straight' rollers (omniwheels)
- More complex conceptually
- ► Fairly complex wheels
- ► Fairly simple to build
- Fairly simple to program and control
- ▶ (Usually) low traction
- Less speed and pushing force on when moving diagonally

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

ypes

Swerve Drive Holonomic Drive

Swerve Drive

Holonomic Drive
Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

References

Mecanum Drive

- Wheels with angled rollers
- Very complex conceptually
- Very complex wheels
- ▶ Otherwise simple to build
- Fairly simple to program and control
- ▶ (Usually) low traction
- Less speed and pushing force on when moving diagonally

Omnidirectional Drive Systems

Ian Mackenzie

Introductio

Advantages and Disadvantages Strategies

ypes

Swerve Drive Holonomic Driv

Mecanum Drive

Kinematics

Swerve Drive Holonomic Drive Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic

otes

Referen

)uestions

Kinematics

- Mathematics describing motion
- Solid grasp of theory makes control much easier
- Great example of how real university-level theory can be applied to FIRST robots
- ► Three step process:
 - Define overall robot motion
 - Usually by \vec{v}_t , $\vec{\omega}$; can transform other forms into this form quite easily
 - Calculate velocity at each wheel
 - Calculate actual wheel speed (and possibly orientation) from that velocity

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics

Swerve Drive Holonomic Drive Mecanum Drive

xamples

Mecanum Drive
Hybrid
Swerve/Holonomic
Drive

Notes

Reference

Single Wheel

Common to all types of

Vector approach

omnidirectional drive

$$\vec{v} = \vec{v}_t + \vec{\omega} \times \vec{r}$$

Scalar approach

$$v_x = v_{t_x} - \omega \cdot r_y$$
$$v_y = v_{t_y} + \omega \cdot r_x$$

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages an Disadvantages

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics

Swerve Drive Holonomic Drive Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

Referen

Entire base

- In general, each wheel will have a unique speed and direction
 - Full swerve drive would require at least 8 motors; has been done once (Chief Delphi in 2001)
 - Swerve drive usually done with 2 swerve modules along with casters or holonomic wheels

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics

Swerve Drive Holonomic Drive Mecanum Drive

Examples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Votes

Reference

Kinematics

Some drive trains use swerve modules steered together

- Four modules steered together (crab drive)
- Front modules steered together, back modules steered together
- Right modules steered together, left modules steered together
- Does not allow full freedom of motion
- Requires fewer steering motors

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Driv

Mecanum Drive

Examples

Hybrid Swerve/Holonomic

Notes

References

Ouestions

- Resolve velocity at each wheel into magnitude and angle
- Be careful with angle quadrant!

$$\begin{aligned} |\vec{v}| &= \sqrt{v_x^2 + v_y^2} \\ \theta &= \arctan\left(\frac{v_y}{v_x}\right) \end{aligned}$$

vpes

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics
Swerve Drive

Holonomic Drive Mecanum Drive

Examples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

Reference

Questions

 Resolve velocity into parallel and perpendicular components

$$\begin{aligned} \left| \vec{v}_{\parallel} \right| &= \vec{v} \cdot \hat{u} \\ &= \left(v_x \hat{\imath} + v_y \hat{\jmath} \right) \cdot \\ &\quad \left(-\frac{1}{\sqrt{2}} \hat{\imath} + \frac{1}{\sqrt{2}} \hat{\jmath} \right) \\ &= -\frac{1}{\sqrt{2}} v_x + \frac{1}{\sqrt{2}} v_y \end{aligned}$$

 \blacktriangleright Magnitude of $\vec{v}_{||}$ gives wheel speed

$$\begin{aligned} |\vec{v}_w| &= & |\vec{v}_{\parallel}| \\ &= & -\frac{1}{\sqrt{2}}v_x + \frac{1}{\sqrt{2}}v_y \end{aligned}$$

Mecanum Drive

- Similar to holonomic drive
- Conceptually: Resolve velocity into components parallel to wheel and parallel to roller
- Not easy to calculate directly (directions are not perpendicular), so do it in two steps

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive

Supra D

Swerve Drive

Mecanum Drive

Examples

Mecanum Drive Hybrid Swerve/Holonomi

Notes

References

Resolve to Roller

- Resolve velocity into components parallel and perpendicular to roller axis
- Perpendicular component can be discarded

$$\begin{aligned} |\vec{v}_{\parallel}| &= \vec{v} \cdot \hat{u} \\ &= (v_x \hat{\imath} + v_y \hat{\jmath}) \cdot \\ &= \left(-\frac{1}{\sqrt{2}} \hat{\imath} + \frac{1}{\sqrt{2}} \hat{\jmath}\right) \\ &= -\frac{1}{\sqrt{2}} v_x + \frac{1}{\sqrt{2}} v_y \end{aligned}$$

 \hat{u} is not the same for each wheel!

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages
Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

inematics werve Drive

Mecanum Drive

Examples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

Reference

Resolve to Wheel

- Use component parallel to roller axis and resolve it into components parallel to wheel and parallel to roller
- This does not involve simple projections like holonomic drive, so we cannot use dot products
- ► However, angle is known, so we can calculate $|\vec{v}_w|$ directly:

$$|\vec{v}_w| = \frac{|\vec{v}_{\parallel}|}{\cos 45^{\circ}}$$

$$= \sqrt{2} \left(-\frac{1}{\sqrt{2}} v_x + \frac{1}{\sqrt{2}} v_y \right)$$

$$= -v_x + v_y$$

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics
Swerve Drive

Mecanum Drive

Examples

Mecanum Drive
Hybrid
Swerve/Holonomic
Drive

Notes

References

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics Swerve Drive Holonomic Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

References

Ouestions

Using wheel 3 as an example:

$$|\vec{v}_{w_3}| = \sqrt{2} \left(-\frac{1}{\sqrt{2}} v_{3_x} + \frac{1}{\sqrt{2}} v_{3_y} \right)$$

$$= -v_{3_x} + v_{3_y}$$

$$= -v_{t_x} - \omega b + v_{t_y} - \omega a$$

$$= v_{t_y} - v_{t_x} - \omega (a + b)$$

Similarly,

$$|\vec{v}_{w_1}| = v_{t_y} - v_{t_x} + \omega (a + b)$$

$$|\vec{v}_{w_2}| = v_{t_y} + v_{t_x} - \omega (a + b)$$

$$|\vec{v}_{w_4}| = v_{t_y} + v_{t_x} + \omega (a + b)$$

Note that all speeds are linear functions of the inputs (i.e. no trigonometry or square roots necessary), so control is very fast.

Introduction

Advantages and Disadvantages Strategies

vnes

Swerve Drive Holonomic Drive Mecanum Drive

Cinematics

Swerve Drive Holonomic Drive Mecanum Drive

Examples

Mecanum Drive Hybrid

Notos

Ouestions

Hybrid Swerve/Holonomic Drive

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages
Strategies

Гуреѕ

Swerve Drive Holonomic Drive Mecanum Drive

Swerve Drive

Holonomic Drive Mecanum Drive

Examples Mecanum Drive

Hybrid Swerve/Holonomic Drive

_

$\begin{array}{rcl} v_{1_x} & = & v_{t_x} \\ \\ v_{1_y} & = & v_{t_y} + \omega a \end{array}$

$$v_{2_x} = v_{t_x}$$

$$v_{2_y} = v_{t_y} - \omega c$$

$$v_{3_x} = v_{t_x} + \omega b$$

$$v_{3_y} = v_{t_y}$$

Mecanum Drive

Hybrid

Swerve/Holonomic Drive

Swerve module 1:

$$\begin{split} |\vec{v}_{w_1}| &= \sqrt{v_{1_x}^2 + v_{1_y}^2} \\ &= \sqrt{v_{t_x}^2 + \left(v_{t_y} + \omega a\right)^2} \\ \theta_1 &= \arctan\left(\frac{v_{1_y}}{v_{1_x}}\right) \\ &= \arctan\left(\frac{v_{t_y} + \omega a}{v_{t_x}}\right) \end{split}$$

Mecanum Drive

Hybrid

Swerve/Holonomic Drive

Swerve module 2:

Hybrid Swerve/Holonomic Drive

Omnidirectional **Drive Systems**

Ian Mackenzie

Holonomic Drive Mecanum Drive

Mecanum Drive

Mecanum Drive Hybrid

Swerve/Holonomic Drive

Holonomic wheel:

$$\begin{array}{rcl} |\vec{v}_{w_3}| & = & \vec{v}_3 \cdot \hat{u}_3 \\ & = & \left(v_{3_x} \hat{\imath} + v_{3_y} \hat{\jmath} \right) \cdot \hat{\jmath} \\ & = & v_{3_y} \\ & = & v_{t_y} \end{array}$$

What's Wrong With This Picture?

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive Mecanum Drive

kamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

References

What's Wrong With THIS Picture?

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

Reference

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Kinematics

Swerve Drive Holonomic Drive Mecanum Drive

vamnles

Mecanum Drive
Hybrid
Swerve/Holonomic

Notes

References

O........

- Speed calculations may result in greater-than-maximum speeds
- Possible to limit inputs so this never happens, but this overly restricts some directions
- Better to adjust speeds on the fly

Scaling Algorithm

- Calculate wheel speeds for each wheel
- ▶ Find maximum wheel speed
- ▶ If this is greater than the maximum possible wheel speed, calculate the scaling factor necessary to reduce it to the maximum possible wheel speed
- Scale all wheel speeds by this factor

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Cinematics

Swerve Drive
Holonomic Drive
Mecanum Drive

xamples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Notes

Referenc

)uestions

Robots to Check Out

Omnidirectional Drive Systems

Team 148 in Curie has mecanum drive with two control modes; tank steering and full 3 degree of freedom steering

Team 16 in Galileo has two swerve modules steered together but driven seperately at the front, and then a third swerve module at the back; drive is either in crab mode or tank mode

Team 71 in Newton has 4 swerve modules steered together but powered seperately, driven in a hybrid crab/tank system

Team 118 in Newton has 4 swerve modules steered *and* driven together (pure crab steering)

Team 830 in Galileo has a pure holonomic drive system with full 3 degree of freedom motion

Introduction

Advantages and Disadvantages Strategies

Types

Swerve Drive Holonomic Drive Mecanum Drive

Cinematics

Swerve Drive Holonomic Drive Mecanum Drive

camples

Mecanum Drive Hybrid Swerve/Holonomic Drive

lotes

References

References I

Swerve

- ► SimSwerve: http://www.chiefdelphi.com/media/papers/1552
- ► Swerve module: http://www.chiefdelphi.com/ forums/showthread.php?t=46817
- Concentric crab drive: http://www.chiefdelphi. com/forums/showthread.php?t=24135
- Concentric drive: http://www.chiefdelphi.com/ forums/showthread.php?t=23034
- ► Concentric crab module: http://www.chiefdelphi. com/forums/showthread.php?t=22708
- ► Concentric crab drive: http: //www.chiefdelphi.com/media/photos/16091
- ► Swerve module: http://www.chiefdelphi.com/ forums/showpost.php?p=195859&postcount=3

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

ypes

Swerve Drive Holonomic Drive

inemati

Swerve Drive Holonomic Dri Mecanum Driv

camples

Mecanum Drive Hybrid Swerve/Holonomic Drive

Votes

References

Swerve Drive
Holonomic Drive

Kinematics
Swerve Drive

Holonomic Drive Mecanum Drive

amples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

References

Questions

► Concentric lego crab drive:

http://www.chiefdelphi.com/forums/
showthread.php?t=22552

Swerve drive approximations: http://www.chiefdelphi.com/forums/ showthread.php?t=22386

- ► Concentric crab module: http://www.chiefdelphi. com/forums/showthread.php?t=20242
- ► Crab drive steering: http://www.chiefdelphi.com/media/papers/1599
- ► Lego crab drive: http://www.chiefdelphi.com/ forums/showthread.php?t=28251
- Swerve drive approximations: http://www.chiefdelphi.com/forums/ showthread.php?t=28195

References III

- ► Team 111 (2003): http: //www.wildstang.org/gallery2/v/2003/2003_ Build/2003_Robot_Build/2003_Robot_Proto/
- ► Team 114 (2005): http://engineer.la.mvla.net/robotics/images. php?showCollection=2005%20Inventor
- ► Crab drive base: http: //www.chiefdelphi.com/media/photos/22005
- ► Swerve with unpowered omni wheels: http: //www.chiefdelphi.com/media/photos/14646
- ► Crab module: http: //www.chiefdelphi.com/media/photos/14556

Mecanum

- ► Mecanum drive: http://robotics.ee.uwa.edu.au/ eyebot/doc/robots/omni.html
- ► Airtrax: http://www.airtrax.com

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages

vpes

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive
Holonomic Drive
Mecanum Drive

camples

Mecanum Drive Hybrid Swerve/Holonomic

Votes

References

Swerve Drive Holonomic Drive

Kinematic

Swerve Drive
Holonomic Drive

camples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

References

Questions

► (Even more) complex Mecanum wheels: http://www.chiefdelphi.com/forums/ showthread.php?t=39885

Mecanum wheel design: http://www.chiefdelphi. com/forums/showthread.php?t=46175

► Mecanum wheel: http: //www.chiefdelphi.com/media/photos/22128

► Mecanum drive: http: //www.chiefdelphi.com/media/photos/20664

Holonomic

- ► AndyMark: http://www.andymark.biz/
- Omni tracks: http://www.chiefdelphi.com/ forums/showthread.php?t=46501
- ► Tilted omniwheels: http://www.chiefdelphi.com/ forums/showthread.php?t=41723

Swerve Drive Holonomic Drive

Kinema

Swerve Drive Holonomic Driv Mecanum Driv

xamples

Mecanum Drive Hybrid Swerve/Holonomic

Votes

References

Questions

Omniwheel position: http://www.chiefdelphi.com/ forums/showthread.php?t=38839

► Holonomic drive: http://www.chiefdelphi.com/ forums/showthread.php?t=28168

► Holonomic drive: http: //www.chiefdelphi.com/media/photos/22831

► Holonomic drive: http: //www.chiefdelphi.com/media/photos/22800

Dual omniwheel: http: //www.chiefdelphi.com/media/photos/21966

Advanced omniwheels: http: //www.chiefdelphi.com/media/photos/19483

General

► Steering control: http://www.chiefdelphi.com/ forums/showthread.php?t=27022

References VI

- ► General discussion: http://www.chiefdelphi.com/forums/showthread.php?t=20434
- ► Strategies: http://www.chiefdelphi.com/forums/showthread.php?t=45967
- ► Good general discussion: http://www.chiefdelphi.com/forums/showthread.php?t=20434

Omnidirectional Drive Systems

Ian Mackenzie

Introduction

Advantages and Disadvantages Strategies

ypes

Swerve Drive Holonomic Drive Mecanum Drive

Kinema

Swerve Drive Holonomic Drive Mecanum Drive

kamples

Mecanum Drive Hybrid Swerve/Holonomic

Notes

References

Questions?

- ▶ ian.e.mackenzie@gmail.com
- "lan Mackenzie" on Chief Delphi

Omnidirectional **Drive Systems**

Ian Mackenzie

Mecanum Drive

Holonomic Drive Mecanum Drive

Mecanum Drive Hybrid