Simbotics – October 16th, 2010

Introduction

Types Two Wheels

Four Wheels
Six Wheels
Omnidirectional

Design Principles
Simplicity
Durability
Weight Distribution
Miscellaneous

Design Process Guidelines Motor Curves Gearing Power Transmission Traction CAD Testing/Practicing

Ian Mackenzie

- Involved in the FIRST Robotics competition since 1998
- Student (188, Woburn Robotics), mentor (1114, Simbotics), referee (Waterloo, Toronto, Championship), event organizer (Waterloo)
- Designed HexaDrive in 2002 (one of the earliest six-motor drivetrains) and SimSwerve in 2004 (omnidirectional swerve drive system with individually raised and lowered wheels)
- Currently a Ph.D. student in mechanical engineering at McMaster University
- ian.e.mackenzie@gmail.com

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Overview

- Move around field
 - ► 27' × 54', usually carpet
- Push/pull objects and robots
- Climb up ramps or over obstructions
- Speed and pushing force both important
 - ► In 2010, durability and power to get over the bump

Introduction

Types <

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Types

- Two wheels
- Four wheels
- Six wheels
- Omnidirectional

Introduction

Types Two Wheels **Four Wheels** Six Wheels **Omnidirectional**

Design Principles Simplicity Durability Weight Distribution Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Two Wheels

- Easy turning, fast
- Susceptible to spin-outs at high speed
- Lose traction (weight on non-powered wheels)
- Caster wheels very annoying to drive

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Four Wheels

- Slightly less manoeuvrable, slightly slower
- More traction, more controllable
- Probably the most common configuration
 - Gearbox in middle, chains to each wheel
- Put along longer dimension to go straighter, along shorter dimension to turn more easily

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Six Wheels

- High traction with better manoeuvrability
- Middle wheels usually lowered 1/8"-3/16" to help with turning
- Slightly trickier to deliver power to all wheels
 - Multiple chains or multiple gearboxes

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Omnidirectional

- Various types of mobility systems with ability to move sideways
 - Swerve
 - Mecanum
 - ▶ Holonomic
- Very manoeuvrable, but...
 - Complex to build
 - Prone to failure
- Only use after careful strategic analysis!

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Design Principles

- **►** Simplicity
- Durability
- Weight distribution
- ► Miscellaneous

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Simplicity

- Fewer things to fail
- Easier and faster to build and repair
- Lighter
- ► More durable
- ► More elegant

Resources

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles
Simplicity

Durability Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Durability

- Simplest mechanisms often the most durable
- Robot will likely go through much more stress than you expect
- Support shafts on both sides
- Use large sprockets to reduce load on chain
 - ► #25 (1/4" pitch) chain usually quite adequate

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Weight Distribution

- Keep as much weight as low as possible
- ► Put weight over the drive wheels
- ► Battery is a large component of the total weight (14 lbs) and can move center of gravity
- ► 2010: just because the bumpers have to be up high doesn't mean the main frame does!

Introduction

Types
Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity Durability

Weight Distribution

Miscellaneous <

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Miscellaneous

▶ Vibration

- Robots go through a lot of vibration, especially at competitions
- Bumpy wheels increase vibration
- ▶ Use Loctite or nylon lock nuts to avoid nuts falling off
- Check bolted connections and shaft collars frequently
- Design for assembly and disassembly
 - ► Fast work necessary at the competition!
 - Leave nuts and bolts accessible

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Design Process

- Guidelines
- Motor curves
- Gearing
- Power transmission
- Traction
- Computer Aided Design
- Testing and practicing

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Guidelines

- 3 ft/s: Very slow, very good pushing force
- 4-7 ft/s: Slow
- 8-12 ft/s: Medium, medium pushing force
- ▶ 13+ ft/s: Hard to control, little pushing force
 - ► Teams have done it successfully, but it may require some fancy programming

Introduction

Types
Two Wheels
Four Wheels
Six Wheels
Omnidirectional

Design Principles
Simplicity
Durability
Weight Distribution
Miscellaneous

Design Process
Guidelines
Motor Curves
Gearing
Power Transmission
Traction
CAD
Testing/Practicing

Motor Curves

- Very valuable source for designing mobility systems
- Usually torque on x-axis, all other variables on y-axis

Introduction

Types
Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles
Simplicity
Durability
Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Motor Curves

 Max power the most important single characteristic

Motor can always be geared to get correct

speed/torque

 Check stall current; be careful if much higher than circuit breaker limit

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing <

Power Transmission

Traction

CAD

Testing/Practicing

Gearing

- A simple pair of gearboxes will almost certainly be included in the kit
 - Very quick to build
 - May not be as powerful or flexible as other methods
- DeWalt drill gearboxes
 - "Nothing But Dewalts" white paper: http://www.chiefdelphi.com/media/papers/1592

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing <

Power Transmission

Traction

CAD

Testing/Practicing

Gearing

- AndyMark gearboxes
 - Designed and built by two extremely experienced FIRST veterans
 - ► Two-speed, shift on the fly gearboxes
 - Adapters available for a variety of motors
 - www.andymark.biz

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Power Transmission

- Keyways
 - ► Strong, hard to machine
- Pins
 - Easy to machine, weak
- Set screws
 - Can come loose easily; Loctite if using
- Bolts
 - Very effective for large gears/sprockets, but annoying when connecting multiple things

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Power Transmission

- Hex shafts
 - ► Very strong, easy to assemble
 - ► Gears, bearings available at www.andymark.biz
 - Need a hex broach if using other gears/hubs
 - Can turn down shaft end to fit in bearings

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles
Simplicity
Durability
Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Traction

- Often the most important factor in determining pushing force
- No metal or hard plastic cleats, etc. allowed
- Supplied wheelchair wheels have quite low traction

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles
Simplicity
Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Traction

- Rubber treads or conveyor belting attached to wheels
 - Innovation First supplies pre-made traction wheels

- Good for shock absorption
- Test on actual carpet!
 - ► Too much traction can make it too hard to turn

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD <

Testing/Practicing

Computer Aided Design

► Use sketching tools to design drivetrain layout

▶ 3D CAD model of drivetrain useful

Ensure quality of the final result

► Easier to design functional attachments

Can be used for virtual prototyping

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles

Simplicity

Durability

Weight Distribution

Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Testing and Practicing

- Test beyond what the robot will likely experience
- ► Test many times in different circumstances
- ► Reinforce weak areas
- ► Tweak components
- ► Build spare parts for suspect components

Introduction

Types

Two Wheels

Four Wheels

Six Wheels

Omnidirectional

Design Principles
Simplicity
Durability

Weight Distribution
Miscellaneous

Design Process

Guidelines

Motor Curves

Gearing

Power Transmission

Traction

CAD

Testing/Practicing

Resources

- www.chiefdelphi.com/forums/papers.php
 - ► White papers on many topics
- www.ChiefDelphi.com
 - Very active and helpful FIRST forums
- http://www.vexrobotics.com/products/vexpro
 - Traction wheels, Victor speed controllers, other useful components
- www.Andymark.biz
 - Gearboxes and other useful components
- www.Simbotics.org
 - ► This and other useful presentations

